ソースを参照

前端不再使用镜像仓库,直接build&添加模型精度工具

ysyyhhh 3 週間 前
コミット
fbf1ffb98a
21 ファイル変更337 行追加1 行削除
  1. 1 0
      docker-compose.yml
  2. 1 1
      manage_platform
  3. BIN
      model_accuracy/output/task_1_fashion2_1/fashion2/accuracy.jpg
  4. BIN
      model_accuracy/output/task_1_fashion2_1/fashion2/fashion2_lemon_results.pkl
  5. BIN
      model_accuracy/output/task_1_fashion2_1/fashion2/inner_output/prediction_fashion2_origin0-LC1.h.pkl
  6. BIN
      model_accuracy/output/task_1_fashion2_1/fashion2/inner_output/prediction_fashion2_origin0.h.pkl
  7. BIN
      model_accuracy/output/task_1_fashion2_1/fashion2/losses.jpg
  8. BIN
      model_accuracy/output/task_1_fashion2_1/fashion2/memory.jpg
  9. 21 0
      model_accuracy/output/task_1_fashion2_1/fashion2/metrics_result/fashion2_D_MAD_result.csv
  10. BIN
      model_accuracy/output/task_1_fashion2_1/fashion2/mut_model/fashion2_origin0-LC1.hdf5
  11. BIN
      model_accuracy/output/task_1_fashion2_1/fashion2/mut_model/fashion2_origin0-LC1.hdf5res.npy
  12. BIN
      model_accuracy/output/task_1_fashion2_1/fashion2/mut_model/fashion2_origin0.hdf5
  13. BIN
      model_accuracy/output/task_1_fashion2_1/fashion2/mut_model/fashion2_origin0.hdf5res.npy
  14. 1 0
      model_accuracy/output/task_1_fashion2_1/fashion2/mutant_history.txt
  15. 13 0
      model_accuracy/output/task_1_fashion2_1/fashion2/mutator_history.csv
  16. 20 0
      model_accuracy/output/task_1_fashion2_1/fashion2/mxnet.json
  17. BIN
      model_accuracy/output/task_1_fashion2_1/fashion2/mxnet_train.jpg
  18. 130 0
      model_accuracy/output/task_1_fashion2_1/fashion2/mxnet_train.json
  19. 20 0
      model_accuracy/output/task_1_fashion2_1/fashion2/tensorflow.json
  20. BIN
      model_accuracy/output/task_1_fashion2_1/fashion2/tensorflow_train.jpg
  21. 130 0
      model_accuracy/output/task_1_fashion2_1/fashion2/tensorflow_train.json

+ 1 - 0
docker-compose.yml

@@ -20,6 +20,7 @@ services:
     environment:
       - SERVER_URL=http://backend:8090
       - MINIO_URL=http://minio:9000
+      - MODEL_ACCURACY_URL=http://model_accuracy_backend:5000
       - CLIENT_PORT=8000
     networks:
       - my_network

+ 1 - 1
manage_platform

@@ -1 +1 @@
-Subproject commit d90931448a0109fd71ff93eb1164d6b0b4217dbf
+Subproject commit cbe2c12acfe6db4baa63dafdb483d6f6fd463ea8

BIN
model_accuracy/output/task_1_fashion2_1/fashion2/accuracy.jpg


BIN
model_accuracy/output/task_1_fashion2_1/fashion2/fashion2_lemon_results.pkl


BIN
model_accuracy/output/task_1_fashion2_1/fashion2/inner_output/prediction_fashion2_origin0-LC1.h.pkl


BIN
model_accuracy/output/task_1_fashion2_1/fashion2/inner_output/prediction_fashion2_origin0.h.pkl


BIN
model_accuracy/output/task_1_fashion2_1/fashion2/losses.jpg


BIN
model_accuracy/output/task_1_fashion2_1/fashion2/memory.jpg


+ 21 - 0
model_accuracy/output/task_1_fashion2_1/fashion2/metrics_result/fashion2_D_MAD_result.csv

@@ -0,0 +1,21 @@
+Mutation-Backend-Pair,Inconsistency Score
+fashion2_origin0.h_tensorflow_mxnet_input0,2.789349491649773e-05
+fashion2_origin0.h_tensorflow_mxnet_input1,2.0714646780106705e-06
+fashion2_origin0.h_tensorflow_mxnet_input2,1.3693011169380043e-06
+fashion2_origin0.h_tensorflow_mxnet_input3,3.507439600980433e-07
+fashion2_origin0.h_tensorflow_mxnet_input4,7.013139224909537e-07
+fashion2_origin0.h_tensorflow_mxnet_input5,0.0011009954614564776
+fashion2_origin0.h_tensorflow_mxnet_input6,1.8905183196693542e-06
+fashion2_origin0.h_tensorflow_mxnet_input7,8.76466219779104e-06
+fashion2_origin0.h_tensorflow_mxnet_input8,3.5046812172367936e-06
+fashion2_origin0.h_tensorflow_mxnet_input9,6.812222181906691e-07
+fashion2_origin0-LC1.h_tensorflow_mxnet_input0,2.789349491649773e-05
+fashion2_origin0-LC1.h_tensorflow_mxnet_input1,2.0714646780106705e-06
+fashion2_origin0-LC1.h_tensorflow_mxnet_input2,1.3693011169380043e-06
+fashion2_origin0-LC1.h_tensorflow_mxnet_input3,3.507439600980433e-07
+fashion2_origin0-LC1.h_tensorflow_mxnet_input4,7.013139224909537e-07
+fashion2_origin0-LC1.h_tensorflow_mxnet_input5,0.0011009954614564776
+fashion2_origin0-LC1.h_tensorflow_mxnet_input6,1.8905183196693542e-06
+fashion2_origin0-LC1.h_tensorflow_mxnet_input7,8.76466219779104e-06
+fashion2_origin0-LC1.h_tensorflow_mxnet_input8,3.5046812172367936e-06
+fashion2_origin0-LC1.h_tensorflow_mxnet_input9,6.812222181906691e-07

BIN
model_accuracy/output/task_1_fashion2_1/fashion2/mut_model/fashion2_origin0-LC1.hdf5


BIN
model_accuracy/output/task_1_fashion2_1/fashion2/mut_model/fashion2_origin0-LC1.hdf5res.npy


BIN
model_accuracy/output/task_1_fashion2_1/fashion2/mut_model/fashion2_origin0.hdf5


BIN
model_accuracy/output/task_1_fashion2_1/fashion2/mut_model/fashion2_origin0.hdf5res.npy


+ 1 - 0
model_accuracy/output/task_1_fashion2_1/fashion2/mutant_history.txt

@@ -0,0 +1 @@
+fashion2_origin0-LC1.hdf5

+ 13 - 0
model_accuracy/output/task_1_fashion2_1/fashion2/mutator_history.csv

@@ -0,0 +1,13 @@
+Name,Success,Invalid,Total
+WS,0,0,0
+GF,0,0,0
+NEB,0,0,0
+NAI,0,0,0
+NS,0,0,0
+ARem,0,0,0
+ARep,0,0,0
+LA,0,0,0
+LC,0,0,1
+LR,0,0,0
+LS,0,0,0
+MLA,0,0,0

+ 20 - 0
model_accuracy/output/task_1_fashion2_1/fashion2/mxnet.json

@@ -0,0 +1,20 @@
+[
+    {
+        "model": "fashion2",
+        "method": "origin0",
+        "result": {
+            "Losses": 0.27812961861491203,
+            "Accuracy": 0.9008319564163685,
+            "MemoryInfoList": 0.8638243675231934
+        }
+    },
+    {
+        "model": "fashion2",
+        "method": "origin0-LC1",
+        "result": {
+            "Losses": 0.2791674640029669,
+            "Accuracy": 0.9012216404080391,
+            "MemoryInfoList": 0.894127368927002
+        }
+    }
+]

BIN
model_accuracy/output/task_1_fashion2_1/fashion2/mxnet_train.jpg


+ 130 - 0
model_accuracy/output/task_1_fashion2_1/fashion2/mxnet_train.json

@@ -0,0 +1,130 @@
+[
+    {
+        "Iterations": 1,
+        "result": {
+            "Losses": 0.3367013931274414,
+            "Accuracy": 0.8994140625,
+            "MemoryInfoList": 0.4956092834472656
+        }
+    },
+    {
+        "Iterations": 2,
+        "result": {
+            "Losses": 0.24620333313941956,
+            "Accuracy": 0.9111328125,
+            "MemoryInfoList": 0.6014060974121094
+        }
+    },
+    {
+        "Iterations": 3,
+        "result": {
+            "Losses": 0.33827871084213257,
+            "Accuracy": 0.8798828125,
+            "MemoryInfoList": 0.6887931823730469
+        }
+    },
+    {
+        "Iterations": 4,
+        "result": {
+            "Losses": 0.26572340726852417,
+            "Accuracy": 0.8994140625,
+            "MemoryInfoList": 0.75433349609375
+        }
+    },
+    {
+        "Iterations": 5,
+        "result": {
+            "Losses": 0.25118356943130493,
+            "Accuracy": 0.908203125,
+            "MemoryInfoList": 0.8308677673339844
+        }
+    },
+    {
+        "Iterations": 6,
+        "result": {
+            "Losses": 0.328828901052475,
+            "Accuracy": 0.900390625,
+            "MemoryInfoList": 0.8530426025390625
+        }
+    },
+    {
+        "Iterations": 7,
+        "result": {
+            "Losses": 0.3095841407775879,
+            "Accuracy": 0.8916015625,
+            "MemoryInfoList": 0.8750267028808594
+        }
+    },
+    {
+        "Iterations": 8,
+        "result": {
+            "Losses": 0.3043195307254791,
+            "Accuracy": 0.8882211446762085,
+            "MemoryInfoList": 0.8966865539550781
+        }
+    },
+    {
+        "Iterations": 9,
+        "result": {
+            "Losses": 0.2658204138278961,
+            "Accuracy": 0.9072265625,
+            "MemoryInfoList": 0.9463386535644531
+        }
+    },
+    {
+        "Iterations": 10,
+        "result": {
+            "Losses": 0.2571800947189331,
+            "Accuracy": 0.9130859375,
+            "MemoryInfoList": 0.9929428100585938
+        }
+    },
+    {
+        "Iterations": 11,
+        "result": {
+            "Losses": 0.25097715854644775,
+            "Accuracy": 0.9091796875,
+            "MemoryInfoList": 1.0163002014160156
+        }
+    },
+    {
+        "Iterations": 12,
+        "result": {
+            "Losses": 0.2616420090198517,
+            "Accuracy": 0.89453125,
+            "MemoryInfoList": 1.0441398620605469
+        }
+    },
+    {
+        "Iterations": 13,
+        "result": {
+            "Losses": 0.22949489951133728,
+            "Accuracy": 0.921875,
+            "MemoryInfoList": 1.0573387145996094
+        }
+    },
+    {
+        "Iterations": 14,
+        "result": {
+            "Losses": 0.301457941532135,
+            "Accuracy": 0.9013671875,
+            "MemoryInfoList": 1.0805702209472656
+        }
+    },
+    {
+        "Iterations": 15,
+        "result": {
+            "Losses": 0.2741645276546478,
+            "Accuracy": 0.892578125,
+            "MemoryInfoList": 1.0872764587402344
+        }
+    },
+    {
+        "Iterations": 16,
+        "result": {
+            "Losses": 0.2451193928718567,
+            "Accuracy": 0.901442289352417,
+            "MemoryInfoList": 1.0853652954101562
+        }
+    }
+]

+ 20 - 0
model_accuracy/output/task_1_fashion2_1/fashion2/tensorflow.json

@@ -0,0 +1,20 @@
+[
+    {
+        "model": "fashion2",
+        "method": "origin0",
+        "result": {
+            "Losses": 0.2736966973170638,
+            "Accuracy": 0.9031747654080391,
+            "MemoryInfoList": 0.7473962306976318
+        }
+    },
+    {
+        "model": "fashion2",
+        "method": "origin0-LC1",
+        "result": {
+            "Losses": 0.2760988213121891,
+            "Accuracy": 0.90240478515625,
+            "MemoryInfoList": 0.7836141586303711
+        }
+    }
+]

BIN
model_accuracy/output/task_1_fashion2_1/fashion2/tensorflow_train.jpg


+ 130 - 0
model_accuracy/output/task_1_fashion2_1/fashion2/tensorflow_train.json

@@ -0,0 +1,130 @@
+[
+    {
+        "Iterations": 1,
+        "result": {
+            "Losses": 0.26122549176216125,
+            "Accuracy": 0.9033203125,
+            "MemoryInfoList": 0.39675140380859375
+        }
+    },
+    {
+        "Iterations": 2,
+        "result": {
+            "Losses": 0.296408474445343,
+            "Accuracy": 0.892578125,
+            "MemoryInfoList": 0.49071502685546875
+        }
+    },
+    {
+        "Iterations": 3,
+        "result": {
+            "Losses": 0.29547828435897827,
+            "Accuracy": 0.904296875,
+            "MemoryInfoList": 0.5905342102050781
+        }
+    },
+    {
+        "Iterations": 4,
+        "result": {
+            "Losses": 0.31191790103912354,
+            "Accuracy": 0.88671875,
+            "MemoryInfoList": 0.6614265441894531
+        }
+    },
+    {
+        "Iterations": 5,
+        "result": {
+            "Losses": 0.2948644161224365,
+            "Accuracy": 0.8896484375,
+            "MemoryInfoList": 0.708648681640625
+        }
+    },
+    {
+        "Iterations": 6,
+        "result": {
+            "Losses": 0.31580033898353577,
+            "Accuracy": 0.9013671875,
+            "MemoryInfoList": 0.7524337768554688
+        }
+    },
+    {
+        "Iterations": 7,
+        "result": {
+            "Losses": 0.30605047941207886,
+            "Accuracy": 0.8935546875,
+            "MemoryInfoList": 0.7813453674316406
+        }
+    },
+    {
+        "Iterations": 8,
+        "result": {
+            "Losses": 0.26845183968544006,
+            "Accuracy": 0.9002403616905212,
+            "MemoryInfoList": 0.7955589294433594
+        }
+    },
+    {
+        "Iterations": 9,
+        "result": {
+            "Losses": 0.2493540346622467,
+            "Accuracy": 0.9150390625,
+            "MemoryInfoList": 0.8411979675292969
+        }
+    },
+    {
+        "Iterations": 10,
+        "result": {
+            "Losses": 0.2806382179260254,
+            "Accuracy": 0.892578125,
+            "MemoryInfoList": 0.8893966674804688
+        }
+    },
+    {
+        "Iterations": 11,
+        "result": {
+            "Losses": 0.24246381223201752,
+            "Accuracy": 0.9072265625,
+            "MemoryInfoList": 0.89453125
+        }
+    },
+    {
+        "Iterations": 12,
+        "result": {
+            "Losses": 0.2804376482963562,
+            "Accuracy": 0.9013671875,
+            "MemoryInfoList": 0.9321784973144531
+        }
+    },
+    {
+        "Iterations": 13,
+        "result": {
+            "Losses": 0.26292067766189575,
+            "Accuracy": 0.9091796875,
+            "MemoryInfoList": 0.9321784973144531
+        }
+    },
+    {
+        "Iterations": 14,
+        "result": {
+            "Losses": 0.26023781299591064,
+            "Accuracy": 0.91015625,
+            "MemoryInfoList": 0.9643669128417969
+        }
+    },
+    {
+        "Iterations": 15,
+        "result": {
+            "Losses": 0.23552371561527252,
+            "Accuracy": 0.9189453125,
+            "MemoryInfoList": 0.9441184997558594
+        }
+    },
+    {
+        "Iterations": 16,
+        "result": {
+            "Losses": 0.2558079957962036,
+            "Accuracy": 0.9122596383094788,
+            "MemoryInfoList": 0.9624443054199219
+        }
+    }
+]