tensorflow.json 2.0 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374
  1. [
  2. {
  3. "model": "lenet5-fashion-mnist",
  4. "method": "origin0",
  5. "result": {
  6. "Losses": 0.3019682774320245,
  7. "Accuracy": 0.9095083400607109,
  8. "MemoryInfoList": 1.1293613910675049
  9. }
  10. },
  11. {
  12. "model": "lenet5-fashion-mnist",
  13. "method": "origin0-LC1",
  14. "result": {
  15. "Losses": 0.39121196046471596,
  16. "Accuracy": 0.885343112051487,
  17. "MemoryInfoList": 1.0829384326934814
  18. }
  19. },
  20. {
  21. "model": "lenet5-fashion-mnist",
  22. "method": "origin0-NEB1",
  23. "result": {
  24. "Losses": 0.30056847259402275,
  25. "Accuracy": 0.899691067636013,
  26. "MemoryInfoList": 1.030726432800293
  27. }
  28. },
  29. {
  30. "model": "lenet5-fashion-mnist",
  31. "method": "origin0-GF1",
  32. "result": {
  33. "Losses": 0.29345680493861437,
  34. "Accuracy": 0.9101186878979206,
  35. "MemoryInfoList": 1.0731189250946045
  36. }
  37. },
  38. {
  39. "model": "lenet5-fashion-mnist",
  40. "method": "origin0-WS1",
  41. "result": {
  42. "Losses": 0.3256398793309927,
  43. "Accuracy": 0.8920710645616055,
  44. "MemoryInfoList": 1.1183841228485107
  45. }
  46. },
  47. {
  48. "model": "lenet5-fashion-mnist",
  49. "method": "origin0-WS1-ARep1",
  50. "result": {
  51. "Losses": 6.0767887234687805,
  52. "Accuracy": 0.593900240957737,
  53. "MemoryInfoList": 1.091719388961792
  54. }
  55. },
  56. {
  57. "model": "lenet5-fashion-mnist",
  58. "method": "origin0-LR1",
  59. "result": {
  60. "Losses": 0.2560179093852639,
  61. "Accuracy": 0.9204054623842239,
  62. "MemoryInfoList": 1.048821210861206
  63. }
  64. },
  65. {
  66. "model": "lenet5-fashion-mnist",
  67. "method": "origin0-NEB2",
  68. "result": {
  69. "Losses": 0.32283942215144634,
  70. "Accuracy": 0.8910898081958294,
  71. "MemoryInfoList": 1.0576846599578857
  72. }
  73. }
  74. ]