12345678910111213141516171819202122232425262728293031323334353637383940414243 |
- [parameters]
- mutate_ops=WS GF NEB NAI NS ARem ARep LA LC LR LS MLA
- metrics=D_MAD
- exps=alexnet-cifar10 xception-imagenet lenet5-fashion-mnist lenet5-mnist resnet50-imagenet vgg16-imagenet vgg19-imagenet densenet121-imagenet mobilenet.1.00.224-imagenet inception.v3-imagenet lstm0-sinewave lstm2-price
- # Path of the initial models
- # Name model file as 'alexnet-cifar10_origin.h5'
- origin_model_dir=/data/origin_model
- # Path of the ImageNet and regression dataset
- dataset_dir=/data/dataset
- # Modifying the backends is not recommended.
- # There is some hard-code in the program about the backends
- backend=tensorflow theano cntk mxnet
- python_prefix = /root/anaconda3/envs/
- output_dir = /data/lemon_outputs
- mutate_num=2
- test_size=10
- pool_size=50
- mutate_ratio=0.3
- gpu_ids = 0,1
- threshold = 0.4
- # minutes
- time_limit = 60
- # use MCMC for mutator selection
- mutator_strategy = MCMC
- # use Roulette for mutant selection
- mutant_strategy = Roulette
- # use counter,timing
- stop_mode=timing
- [redis]
- # your-redis-server
- host= 127.0.0.1
- # redis port
- port= 6379
- # db number
- redis_db= 0
|