svhn_origin0-LA5.json 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294
  1. {
  2. "edges": [
  3. [
  4. "Conv2D",
  5. "Activation"
  6. ],
  7. [
  8. "Activation",
  9. "MaxPooling2D"
  10. ],
  11. [
  12. "MaxPooling2D",
  13. "Softmax"
  14. ],
  15. [
  16. "Softmax",
  17. "Conv2D"
  18. ],
  19. [
  20. "MaxPooling2D",
  21. "Flatten"
  22. ],
  23. [
  24. "Flatten",
  25. "Dense"
  26. ],
  27. [
  28. "Dense",
  29. "Dense"
  30. ]
  31. ],
  32. "layer_config": {
  33. "Conv2D": [
  34. {
  35. "trainable": true,
  36. "kernel_size": [
  37. 5,
  38. 5
  39. ],
  40. "strides": [
  41. 1,
  42. 1
  43. ],
  44. "padding": "valid",
  45. "data_format": "channels_last",
  46. "dilation_rate": [
  47. 1,
  48. 1
  49. ],
  50. "activation": "linear",
  51. "use_bias": false,
  52. "kernel_initializer": {
  53. "class_name": "VarianceScaling",
  54. "config": {
  55. "scale": 1.0,
  56. "mode": "fan_avg",
  57. "distribution": "uniform",
  58. "seed": null
  59. }
  60. },
  61. "bias_initializer": {
  62. "class_name": "Zeros",
  63. "config": {}
  64. },
  65. "kernel_regularizer": "None",
  66. "bias_regularizer": "None",
  67. "activity_regularizer": "None",
  68. "kernel_constraint": "None",
  69. "bias_constraint": "None"
  70. }
  71. ],
  72. "Activation": [
  73. {
  74. "trainable": true,
  75. "activation": "relu"
  76. }
  77. ],
  78. "MaxPooling2D": [
  79. {
  80. "trainable": true,
  81. "pool_size": [
  82. 2,
  83. 2
  84. ],
  85. "padding": "valid",
  86. "strides": [
  87. 2,
  88. 2
  89. ],
  90. "data_format": "channels_last"
  91. }
  92. ],
  93. "Softmax": [
  94. {
  95. "trainable": true,
  96. "batch_input_shape": [
  97. null,
  98. 14,
  99. 14,
  100. 6
  101. ],
  102. "dtype": "float32",
  103. "axis": -1
  104. }
  105. ],
  106. "Flatten": [
  107. {
  108. "trainable": true,
  109. "data_format": "channels_last"
  110. }
  111. ],
  112. "Dense": [
  113. {
  114. "trainable": true,
  115. "activation": "relu",
  116. "use_bias": true,
  117. "kernel_initializer": {
  118. "class_name": "VarianceScaling",
  119. "config": {
  120. "scale": 1.0,
  121. "mode": "fan_avg",
  122. "distribution": "uniform",
  123. "seed": null
  124. }
  125. },
  126. "bias_initializer": {
  127. "class_name": "Zeros",
  128. "config": {}
  129. },
  130. "kernel_regularizer": "None",
  131. "bias_regularizer": "None",
  132. "activity_regularizer": "None",
  133. "kernel_constraint": "None",
  134. "bias_constraint": "None"
  135. },
  136. {
  137. "trainable": true,
  138. "activation": "softmax",
  139. "use_bias": true,
  140. "kernel_initializer": {
  141. "class_name": "VarianceScaling",
  142. "config": {
  143. "scale": 1.0,
  144. "mode": "fan_avg",
  145. "distribution": "uniform",
  146. "seed": null
  147. }
  148. },
  149. "bias_initializer": {
  150. "class_name": "Zeros",
  151. "config": {}
  152. },
  153. "kernel_regularizer": "None",
  154. "bias_regularizer": "None",
  155. "activity_regularizer": "None",
  156. "kernel_constraint": "None",
  157. "bias_constraint": "None"
  158. }
  159. ]
  160. },
  161. "layer_input_info": {
  162. "Conv2D": {
  163. "input_dims": [
  164. 4
  165. ],
  166. "dtype": [
  167. "float32"
  168. ],
  169. "shape": [
  170. "[Dimension(None), Dimension(32), Dimension(32), Dimension(3)]",
  171. "[Dimension(None), Dimension(14), Dimension(14), Dimension(6)]"
  172. ]
  173. },
  174. "Activation": {
  175. "input_dims": [
  176. 4
  177. ],
  178. "dtype": [
  179. "float32"
  180. ],
  181. "shape": [
  182. "[Dimension(None), Dimension(28), Dimension(28), Dimension(6)]",
  183. "[Dimension(None), Dimension(10), Dimension(10), Dimension(16)]"
  184. ]
  185. },
  186. "MaxPooling2D": {
  187. "input_dims": [
  188. 4
  189. ],
  190. "dtype": [
  191. "float32"
  192. ],
  193. "shape": [
  194. "[Dimension(None), Dimension(28), Dimension(28), Dimension(6)]",
  195. "[Dimension(None), Dimension(10), Dimension(10), Dimension(16)]"
  196. ]
  197. },
  198. "Softmax": {
  199. "input_dims": [
  200. 4
  201. ],
  202. "dtype": [
  203. "float32"
  204. ],
  205. "shape": [
  206. "[Dimension(None), Dimension(14), Dimension(14), Dimension(6)]"
  207. ]
  208. },
  209. "Flatten": {
  210. "input_dims": [
  211. 4
  212. ],
  213. "dtype": [
  214. "float32"
  215. ],
  216. "shape": [
  217. "[Dimension(None), Dimension(5), Dimension(5), Dimension(16)]"
  218. ]
  219. },
  220. "Dense": {
  221. "input_dims": [
  222. 2
  223. ],
  224. "dtype": [
  225. "float32"
  226. ],
  227. "shape": [
  228. "[Dimension(None), Dimension(None)]",
  229. "[Dimension(None), Dimension(120)]",
  230. "[Dimension(None), Dimension(84)]"
  231. ]
  232. }
  233. },
  234. "layer_num": 11,
  235. "layer_type": [
  236. "Conv2D",
  237. "Activation",
  238. "MaxPooling2D",
  239. "Softmax",
  240. "Flatten",
  241. "Dense"
  242. ],
  243. "cur_edge_num": 11,
  244. "layer_dims": {
  245. "Conv2D": {
  246. "input_dims": [
  247. 4
  248. ],
  249. "output_dims": [
  250. 4
  251. ]
  252. },
  253. "Activation": {
  254. "input_dims": [
  255. 4
  256. ],
  257. "output_dims": [
  258. 4
  259. ]
  260. },
  261. "MaxPooling2D": {
  262. "input_dims": [
  263. 4
  264. ],
  265. "output_dims": [
  266. 4
  267. ]
  268. },
  269. "Softmax": {
  270. "input_dims": [
  271. 4
  272. ],
  273. "output_dims": [
  274. 4
  275. ]
  276. },
  277. "Flatten": {
  278. "input_dims": [
  279. 4
  280. ],
  281. "output_dims": [
  282. 2
  283. ]
  284. },
  285. "Dense": {
  286. "input_dims": [
  287. 2
  288. ],
  289. "output_dims": [
  290. 2
  291. ]
  292. }
  293. }
  294. }