svhn_origin0-ARep10.json 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
  1. {
  2. "edges": [
  3. [
  4. "Conv2D",
  5. "Activation"
  6. ],
  7. [
  8. "Activation",
  9. "MaxPooling2D"
  10. ],
  11. [
  12. "MaxPooling2D",
  13. "Conv2D"
  14. ],
  15. [
  16. "MaxPooling2D",
  17. "Flatten"
  18. ],
  19. [
  20. "Flatten",
  21. "Dense"
  22. ],
  23. [
  24. "Dense",
  25. "Dense"
  26. ]
  27. ],
  28. "layer_config": {
  29. "Conv2D": [
  30. {
  31. "trainable": true,
  32. "kernel_size": [
  33. 5,
  34. 5
  35. ],
  36. "strides": [
  37. 1,
  38. 1
  39. ],
  40. "padding": "valid",
  41. "data_format": "channels_last",
  42. "dilation_rate": [
  43. 1,
  44. 1
  45. ],
  46. "activation": "linear",
  47. "use_bias": false,
  48. "kernel_initializer": {
  49. "class_name": "VarianceScaling",
  50. "config": {
  51. "scale": 1.0,
  52. "mode": "fan_avg",
  53. "distribution": "uniform",
  54. "seed": null
  55. }
  56. },
  57. "bias_initializer": {
  58. "class_name": "Zeros",
  59. "config": {}
  60. },
  61. "kernel_regularizer": "None",
  62. "bias_regularizer": "None",
  63. "activity_regularizer": "None",
  64. "kernel_constraint": "None",
  65. "bias_constraint": "None"
  66. }
  67. ],
  68. "Activation": [
  69. {
  70. "trainable": true,
  71. "activation": "relu"
  72. }
  73. ],
  74. "MaxPooling2D": [
  75. {
  76. "trainable": true,
  77. "pool_size": [
  78. 2,
  79. 2
  80. ],
  81. "padding": "valid",
  82. "strides": [
  83. 2,
  84. 2
  85. ],
  86. "data_format": "channels_last"
  87. }
  88. ],
  89. "Flatten": [
  90. {
  91. "trainable": true,
  92. "data_format": "channels_last"
  93. }
  94. ],
  95. "Dense": [
  96. {
  97. "trainable": true,
  98. "activation": "tanh",
  99. "use_bias": true,
  100. "kernel_initializer": {
  101. "class_name": "VarianceScaling",
  102. "config": {
  103. "scale": 1.0,
  104. "mode": "fan_avg",
  105. "distribution": "uniform",
  106. "seed": null
  107. }
  108. },
  109. "bias_initializer": {
  110. "class_name": "Zeros",
  111. "config": {}
  112. },
  113. "kernel_regularizer": "None",
  114. "bias_regularizer": "None",
  115. "activity_regularizer": "None",
  116. "kernel_constraint": "None",
  117. "bias_constraint": "None"
  118. },
  119. {
  120. "trainable": true,
  121. "activation": "relu",
  122. "use_bias": true,
  123. "kernel_initializer": {
  124. "class_name": "VarianceScaling",
  125. "config": {
  126. "scale": 1.0,
  127. "mode": "fan_avg",
  128. "distribution": "uniform",
  129. "seed": null
  130. }
  131. },
  132. "bias_initializer": {
  133. "class_name": "Zeros",
  134. "config": {}
  135. },
  136. "kernel_regularizer": "None",
  137. "bias_regularizer": "None",
  138. "activity_regularizer": "None",
  139. "kernel_constraint": "None",
  140. "bias_constraint": "None"
  141. },
  142. {
  143. "trainable": true,
  144. "activation": "softmax",
  145. "use_bias": true,
  146. "kernel_initializer": {
  147. "class_name": "VarianceScaling",
  148. "config": {
  149. "scale": 1.0,
  150. "mode": "fan_avg",
  151. "distribution": "uniform",
  152. "seed": null
  153. }
  154. },
  155. "bias_initializer": {
  156. "class_name": "Zeros",
  157. "config": {}
  158. },
  159. "kernel_regularizer": "None",
  160. "bias_regularizer": "None",
  161. "activity_regularizer": "None",
  162. "kernel_constraint": "None",
  163. "bias_constraint": "None"
  164. }
  165. ]
  166. },
  167. "layer_input_info": {
  168. "Conv2D": {
  169. "input_dims": [
  170. 4
  171. ],
  172. "dtype": [
  173. "float32"
  174. ],
  175. "shape": [
  176. "[Dimension(None), Dimension(32), Dimension(32), Dimension(3)]",
  177. "[Dimension(None), Dimension(14), Dimension(14), Dimension(6)]"
  178. ]
  179. },
  180. "Activation": {
  181. "input_dims": [
  182. 4
  183. ],
  184. "dtype": [
  185. "float32"
  186. ],
  187. "shape": [
  188. "[Dimension(None), Dimension(28), Dimension(28), Dimension(6)]",
  189. "[Dimension(None), Dimension(10), Dimension(10), Dimension(16)]"
  190. ]
  191. },
  192. "MaxPooling2D": {
  193. "input_dims": [
  194. 4
  195. ],
  196. "dtype": [
  197. "float32"
  198. ],
  199. "shape": [
  200. "[Dimension(None), Dimension(28), Dimension(28), Dimension(6)]",
  201. "[Dimension(None), Dimension(10), Dimension(10), Dimension(16)]"
  202. ]
  203. },
  204. "Flatten": {
  205. "input_dims": [
  206. 4
  207. ],
  208. "dtype": [
  209. "float32"
  210. ],
  211. "shape": [
  212. "[Dimension(None), Dimension(5), Dimension(5), Dimension(16)]"
  213. ]
  214. },
  215. "Dense": {
  216. "input_dims": [
  217. 2
  218. ],
  219. "dtype": [
  220. "float32"
  221. ],
  222. "shape": [
  223. "[Dimension(None), Dimension(None)]",
  224. "[Dimension(None), Dimension(120)]",
  225. "[Dimension(None), Dimension(84)]"
  226. ]
  227. }
  228. },
  229. "layer_num": 10,
  230. "layer_type": [
  231. "Conv2D",
  232. "Activation",
  233. "MaxPooling2D",
  234. "Flatten",
  235. "Dense"
  236. ],
  237. "cur_edge_num": 10,
  238. "layer_dims": {
  239. "Conv2D": {
  240. "input_dims": [
  241. 4
  242. ],
  243. "output_dims": [
  244. 4
  245. ]
  246. },
  247. "Activation": {
  248. "input_dims": [
  249. 4
  250. ],
  251. "output_dims": [
  252. 4
  253. ]
  254. },
  255. "MaxPooling2D": {
  256. "input_dims": [
  257. 4
  258. ],
  259. "output_dims": [
  260. 4
  261. ]
  262. },
  263. "Flatten": {
  264. "input_dims": [
  265. 4
  266. ],
  267. "output_dims": [
  268. 2
  269. ]
  270. },
  271. "Dense": {
  272. "input_dims": [
  273. 2
  274. ],
  275. "output_dims": [
  276. 2
  277. ]
  278. }
  279. }
  280. }