1234567891011121314151617181920212223242526272829303132333435363738394041424344454647 |
- [parameters]
- mutate_ops=WS GF NEB NAI NS ARem ARep LA LC LR LS MLA
- metrics=D_MAD
- #metrics=deepgini
- exps=mobilenet.1.00.224-imagenet
- # lexnet-cifar10 lenet5-fashion-mnist fashion2 svhn lenet5-mnist alexnet-cifar10 mobilenet.1.00.224-imagenet vgg16-imagenet
- # Path of the initial models
- # Name model file as 'alexnet-cifar10_origin.h5'
- origin_model_dir=origin_model
- # Path of the ImageNet and regression dataset
- dataset_dir=dataset
- # Modifying the backends is not recommended.
- # There is some hard-code in the program about the backends
- backend=tensorflow mxnet
- #..python_prefix = /root/anaconda3/envs/
- python_prefix=/opt/conda/envs/
- output_dir = lemon_outputs
- mutate_num=20
- test_size=10
- pool_size=50
- mutate_ratio=0.3
- gpu_ids = 0,1
- threshold = 0.4
- # minutes
- time_limit = 3
- # use MCMC for mutator selection
- mutator_strategy = MCMC
- # use Roulette for mutant selection
- mutant_strategy = Roulette
- # use counter,timing
- stop_mode=counter
- [redis]
- # your-redis-server
- host= 127.0.0.1
- # redis port
- port= 6379
- # db number
- redis_db= 0
|