[parameters] mutate_ops=WS GF NEB NAI NS ARem ARep LA LC LR LS MLA metrics=D_MAD exps=alexnet-cifar10 xception-imagenet lenet5-fashion-mnist lenet5-mnist resnet50-imagenet vgg16-imagenet vgg19-imagenet densenet121-imagenet mobilenet.1.00.224-imagenet inception.v3-imagenet lstm0-sinewave lstm2-price # Path of the initial models # Name model file as 'alexnet-cifar10_origin.h5' origin_model_dir=/data/origin_model # Path of the ImageNet and regression dataset dataset_dir=/data/dataset # Modifying the backends is not recommended. # There is some hard-code in the program about the backends backend=tensorflow theano cntk mxnet python_prefix = /root/anaconda3/envs/ output_dir = /data/lemon_outputs mutate_num=2 test_size=10 pool_size=50 mutate_ratio=0.3 gpu_ids = 0,1 threshold = 0.4 # minutes time_limit = 60 # use MCMC for mutator selection mutator_strategy = MCMC # use Roulette for mutant selection mutant_strategy = Roulette # use counter,timing stop_mode=timing [redis] # your-redis-server host= 127.0.0.1 # redis port port= 6379 # db number redis_db= 0