# -*-coding:UTF-8-*- """get prediction for each backend """ import sys import os sys.path.append("../") import numpy as np import pickle import argparse import configparser from scripts.tools.utils import DataUtils from scripts.logger.lemon_logger import Logger import warnings main_logger = Logger() def custom_objects(): def no_activation(x): return x def leakyrelu(x): import keras.backend as K return K.relu(x, alpha=0.01) objects = {} objects['no_activation'] = no_activation objects['leakyrelu'] = leakyrelu return objects def _get_prediction(bk, x, y, model_path,batch_size): """ Get prediction of models on different backends """ test_x, test_y = x[:flags.test_size],y[:flags.test_size] predict_model = keras.models.load_model(model_path,custom_objects=custom_objects()) # predict_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) main_logger.info("INFO:load model and compile done!") res = predict_model.predict(test_x,batch_size=batch_size) root_dir = model_path.split("origin_model")[0] npy_path = root_dir + 'res.npy' # 保存模型预测结果的路径,patch_prediction_extractor.py中的44行改成一样的路径 #test_x:测试集 #batch_size:单次训练数据样本大小 np.save(npy_path,res) #把预测结果保存到本地 main_logger.info("SUCCESS:Get prediction for {} successfully on {}!".format(mut_model_name,bk)) """Store prediction result to redis""" # redis_conn.hset("prediction_{}".format(mut_model_name),bk,pickle.dumps(res)) if __name__ == "__main__": """Parser of command args""" parse = argparse.ArgumentParser() parse.add_argument("--backend", type=str, help="name of backends") parse.add_argument("--exp", type=str, help="experiments identifiers") parse.add_argument("--test_size", type=int, help="amount of testing image") parse.add_argument("--model", type=str, help="path of the model to predict") #parse.add_argument("--redis_db", type=int) parse.add_argument("--config_name", type=str) flags, unparsed = parse.parse_known_args(sys.argv[1:]) """Load Configuration""" warnings.filterwarnings("ignore") lemon_cfg = configparser.ConfigParser() # lemon_cfg.read(f"./config/{flags.config_name}") root_dir = flags.model.split("origin_model")[0] cfg_path = os.path.join(os.path.dirname(os.getcwd()), "config", flags.config_name) lemon_cfg.read(cfg_path) #pool = redis.ConnectionPool(host=lemon_cfg['redis']['host'], port=lemon_cfg['redis']['port'],db=flags.redis_db) #redis_conn = redis.Redis(connection_pool=pool) parameters = lemon_cfg['parameters'] # gpu_ids = parameters['gpu_ids'] # gpu_list = parameters['gpu_ids'].split(",") """Init cuda""" #os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" #os.environ["CUDA_VISIBLE_DEVICES"] = gpu_ids warnings.filterwarnings("ignore") batch_size= 32 """Switch backend""" bk_list = ['tensorflow', 'mxnet'] bk = flags.backend os.environ['KERAS_BACKEND'] = bk os.environ['PYTHONHASHSEED'] = '0' if bk == 'tensorflow': os.environ["TF_CPP_MIN_LOG_LEVEL"] = '2' # 只显示 warning 和 Error import tensorflow as tf main_logger.info(tf.__version__) batch_size = 128 import keras if bk == 'theano': # if len(gpu_list) == 2: # os.environ['THEANO_FLAGS'] = f"device=cuda,contexts=dev{gpu_list[0]}->cuda{gpu_list[0]};dev{gpu_list[1]}->cuda{gpu_list[1]}," \ # f"force_device=True,floatX=float32,lib.cnmem=1" # else: # os.environ['THEANO_FLAGS'] = f"device=cuda,contexts=dev{gpu_list[0]}->cuda{gpu_list[0]}," \ # f"force_device=True,floatX=float32,lib.cnmem=1" import theano as th import keras main_logger.info(th.__version__) if bk == "cntk": #from cntk.device import try_set_default_device,gpu #try_set_default_device(gpu(int(gpu_list[0]))) import cntk as ck main_logger.info(ck.__version__) import keras if bk == "mxnet": import mxnet as mxnet main_logger.info(f"mxnet_version {mxnet.__version__}") import keras batch_size = 16 from keras import backend as K try: """Get model prediction""" main_logger.info("INFO:Using {} as backend for states extraction| {} is wanted".format(K.backend(),bk)) x, y = DataUtils.get_data_by_exp(flags.exp)#读取数据集并做转换 mut_model_name = os.path.split(flags.model)[-1] print(flags.model) _get_prediction(bk=bk, x=x, y=y, model_path=flags.model,batch_size=batch_size) except Exception: import traceback traceback.print_exc() sys.exit(-1)