import os import keras import psutil import configparser import os import sys sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import scripts.tools.utils as tools_utils import argparse import json class LossHistory(keras.callbacks.Callback): def on_train_begin(self, logs=None): self.losses = [] self.acc = [] self.mem_info_list = [] def on_batch_end(self, batch, logs=None): process = psutil.Process() self.losses.append(logs.get('loss')) self.acc.append(logs.get('acc')) self.mem_info_list.append(process.memory_info().rss / (1024**3)) def save_log_txt(model, path, name, bk, x_train, y_train): history_loss = LossHistory() model.fit(x_train, y_train, epochs=2, batch_size=1024, validation_split=0.2, verbose=1, callbacks=[history_loss]) model_name = name.split("/")[-1].split("_")[0] method_name = name.split("/")[-1].split("_")[1] valid_acc = [acc for acc in history_loss.acc if acc is not None] result_data = { "model": model_name, "method": method_name, "result": { "Losses": sum(history_loss.losses)/len(history_loss.losses), "Accuracy": sum(valid_acc)/len(valid_acc), "MemoryInfoList": sum(history_loss.mem_info_list)/len(history_loss.mem_info_list) } } if os.path.exists(path): with open(path, 'r') as json_file: data = json.load(json_file) else: data = [] data.append(result_data) with open(path, 'w') as json_file: json.dump(data, json_file, indent=4) def custom_objects(): def no_activation(x): return x def leakyrelu(x): import keras.backend as K return K.relu(x, alpha=0.01) objects = {} objects['no_activation'] = no_activation objects['leakyrelu'] = leakyrelu return objects def model_to_txt1(model_path, bk): cur_model = keras.models.load_model(model_path, custom_objects=custom_objects()) cur_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) data = tools_utils.DataUtils if 'svhn' in model_path or 'fashion2' in model_path: txt_path = model_path.split("\\")[-1][:-5].split("mut_model")[0]+bk+".json" else: txt_path = model_path.split("\\")[-1][:-3].split("mut_model")[0]+bk+".json" if 'svhn' in model_path or 'fashion2' in model_path: model_path = model_path.split("\\")[-1][:-5] else: model_path = model_path.split("\\")[-1][:-3] data_path = model_path.split("/")[-1] x_test, y_test = data.get_data_by_exp(data_path) save_log_txt(cur_model,txt_path,model_path,bk,x_test, y_test) if __name__ == "__main__": """Parser of command args""" parse = argparse.ArgumentParser() parse.add_argument("--backend", type=str, help="name of backends") parse.add_argument("--model_path", type=str, help="redis db port") parse.add_argument("--root_dir", type=str, help="redis db port") flags, unparsed = parse.parse_known_args(sys.argv[1:]) """Load Configuration""" lemon_cfg = configparser.ConfigParser() # lemon_cfg.read(f"./config/{flags.config_name}") conf_path = os.path.join(os.path.dirname(os.getcwd()), "config", "demo.conf") lemon_cfg.read(conf_path) parameters = lemon_cfg['parameters'] gpu_ids = parameters['gpu_ids'] gpu_list = parameters['gpu_ids'].split(",") """Init cuda""" os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = gpu_ids """Switch backend""" bk_list = ['tensorflow', 'theano', 'cntk', 'mxnet'] bk = flags.backend print('.........................',type(bk)) os.environ['KERAS_BACKEND'] = bk os.environ['PYTHONHASHSEED'] = '0' if bk == 'tensorflow': os.environ["TF_CPP_MIN_LOG_LEVEL"] = '2' # 只显示 warning 和 Error import tensorflow as tf if bk == 'theano': if len(gpu_list) == 2: os.environ[ 'THEANO_FLAGS'] = f"device=cuda,contexts=dev{gpu_list[0]}->cuda{gpu_list[0]};dev{gpu_list[1]}->cuda{gpu_list[1]}," \ f"force_device=True,floatX=float32,lib.cnmem=1" else: os.environ['THEANO_FLAGS'] = f"device=cuda,contexts=dev{gpu_list[0]}->cuda{gpu_list[0]}," \ f"force_device=True,floatX=float32,lib.cnmem=1" batch_size = 32 import theano as th mylogger.info(th.__version__) if bk == "cntk": batch_size = 32 from cntk.device import try_set_default_device, gpu try_set_default_device(gpu(int(gpu_list[0]))) import cntk as ck if bk == "mxnet": batch_size = 32 import mxnet as mxnet from keras import backend as K import keras print("Using {} as backend for states extraction| {} is wanted".format(K.backend(),bk)) """Get model hidden output on selected_index data on specific backend""" model_to_txt1(flags.model_path, bk)