123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202 |
- from re import A
- from turtle import color
- from xml.dom.minidom import parse
- import xml.dom.minidom
- import random
- import json
- import os
- import sys
- from numpy import var
- from pyrsistent import v
- from regex import F
- from scipy import rand
- # from radar_error_test import *
- # day_of_month = [0,31,29,31,30,31,30,31,31,30,31,30,31]
- model_name = "4"
- # Function vehicleRandomization
- #
- # Parameters:
- # name: 指定的ScenarioObject名称
- # car_type: boolean值,true时随机car类型,false时不发生随机
- # car_color: list[boolean],决定三种颜色RGB是否发生随机
- # var_map: dict 存储变量值
- def vehicleRandomization(name, red, green, blue, var_map, e):
- scenario_obj = e.getElementsByTagName("ScenarioObject")
- for obj in scenario_obj:
- if obj.getAttribute("name") == name:
- v = obj.getElementsByTagName('Vehicle')[0] # 获取带随机ScenarioObject代码块
- org_car_name = v.getAttribute("name")
- # variable["org_car_name"] = org_car_name
- p_1 = v.getElementsByTagName('Properties')[0] # Properties层
- p_2 = p_1.getElementsByTagName('Property')
- for p in p_2:
- if p.getAttribute("name") == "color":
- org_color = p.getAttribute("value")
- # print("车辆原颜色为", org_color, '\n')
- color_list = org_color.split(",")
- var_map["org_R"] = color_list[0]
- var_map["org_G"] = color_list[1]
- var_map["org_B"] = color_list[2]
- final_color = ""
- c1 = str(red)
- var_map["rand_R"] = c1
- final_color += c1
- final_color += ","
- c2 = str(green)
- var_map["rand_G"] = c2
- final_color += c2
- final_color += ","
- c3 = str(blue)
- var_map["rand_B"] = c3
- final_color += c3
- p.setAttribute("value", final_color)
- # print("车辆颜色随机为", final_color, '\n')
- # Function envRandomization
- #
- # Parameters:
- # is_time: boolean值,true时随机日期类型,false时不发生随机
- # is_sun: boolean值,true时随机intensity,false时不发生随机
- # is_precipitation: boolean值,true时随机天气类型,在rain和dry中间取值
- # is_fog: boolean值,true时随机fog的visual_range以及intensity
- # var_map: dict 存储变量值
- def envRandomization(mut_date, mut_time, mut_fog, mut_precipitation, mut_sun_intensity, var_map, s): # 环境随机代码
- env = s.getElementsByTagName('Init')[0].getElementsByTagName('Actions')[0].getElementsByTagName('GlobalAction')[
- 0].getElementsByTagName('EnvironmentAction')[0].getElementsByTagName('Environment')[0]
- time_of_day = env.getElementsByTagName("TimeOfDay")[0]
- weather = env.getElementsByTagName("Weather")[0]
- sun = weather.getElementsByTagName("Sun")[0]
- fog = weather.getElementsByTagName("Fog")[0]
- p = weather.getElementsByTagName("Precipitation")[0]
- # 原始时间数据读取
- datetime = time_of_day.getAttribute("dateTime")
- var_map["org_time"] = datetime
- # 原始太阳照度读取
- org_s_intensity = sun.getAttribute("intensity")
- var_map["org_sun_intensity"] = org_s_intensity
- # 原始雾天数据读取
- fog_para = fog.getAttribute("visualRange").split("\\")
- if (len(fog_para) == 1):
- org_visual_range = fog_para[0]
- # org_f_intensity = 100
- # else:
- # org_visual_range = fog_para[0]
- # org_f_intensity = fog_para[1]
- var_map["org_visual_range"] = org_visual_range
- # var_map["org_fog_intensity"] = org_f_intensity
- # 原始降水数据读取
- org_precipitation = p.getAttribute("precipitationType")
- org_p_intensity = p.getAttribute("intensity")
- var_map["org_precipitation"] = org_precipitation
- var_map["org_precipitation_intensity"] = org_p_intensity
- # 日期
- time_of_day.setAttribute("animation", "true")
- date = str(datetime.split("T")[0])
- rand_month = mut_date
- ori_day = date[8:]
- if (rand_month < 10): # format
- rand_month = "0" + str(rand_month)
- # if(rand_day<10): #format
- # rand_day = "0" + str(rand_day)
- rand_date = "2020-" + str(rand_month) + "-" + str(ori_day)
- var_map["rand_date"] = rand_date
- # 时间
- time_of_day.setAttribute("animation", "true")
- date = rand_date
- rand_hour = mut_time
- if (rand_hour < 10): # format
- rand_hour = "0" + str(rand_hour)
- rand_time = date + "T" + str(rand_hour) + ":00:00"
- time_of_day.setAttribute("dateTime", rand_time)
- var_map["rand_time"] = rand_time
- # 照度
- rand_s_intensity = round((mut_sun_intensity / 100.0), 2)
- sun.setAttribute("intensity", str(rand_s_intensity))
- var_map["rand_sun_intensity"] = rand_s_intensity
- # 降水
- rand_p_intensity = round((mut_precipitation / 100.0), 2)
- p.setAttribute("intensity", str(rand_p_intensity))
- var_map["rand_precipitation_intensity"] = rand_p_intensity
- # 雾天及雾浓度
- rand_fog = str(mut_fog) # 雾天
- var_map["rand_fog"] = rand_fog
- fog_para = rand_fog
- fog.setAttribute("visualRange", fog_para)
- var_map["visualRange"] = fog_para
- def Simulation(rand_para, var_map, e, s):
- print(rand_para)
- vehicleRandomization("adversary", rand_para[0], rand_para[1], rand_para[2], var_map, e)
- envRandomization(rand_para[3], rand_para[4], rand_para[5], rand_para[6], rand_para[7], var_map, s)
- def writeBack(xml_path, DOMTree):
- # 写回源文件使属性修改生效
- fp = open(xml_path, 'w+', encoding='utf-8')
- DOMTree.writexml(fp, indent='', addindent='', newl='', encoding='utf-8')
- fp.close()
- def ga_sim(color1, color2, color3, time1, time2, fog, rain, sun, seed_name, data_collection_para):
- mutation_name = seed_name.split("_")
- complete_mutation_name = "seed_0_0_" + mutation_name[3]
- parse_path = "../seed_pool/" + complete_mutation_name
- # 使用minidom解析器打开 XML 文档
- DOMTree = xml.dom.minidom.parse(parse_path)
- # Linux下改一下路径
- ele = DOMTree.documentElement
- e = ele.getElementsByTagName("Entities")[0]
- s = ele.getElementsByTagName("Storyboard")[0]
- xml_path = '../seed_pool/' + seed_name
- variable = {"name": "origin & random parameters"}
- rand_para = [color1, color2, color3, time1, time2, fog, rain, sun]
- Simulation(rand_para, variable, e, s)
- # print(variable)
- writeBack(xml_path, DOMTree)
- os.system("bash ./ga_sim.sh " + seed_name)
- data_collection_para = str(data_collection_para[0])+','+str(data_collection_para[1])+','+str(data_collection_para[2])
- os.system("python ga_error_test.py " + model_name + " 1 " + seed_name + " " + data_collection_para)
- error = 0
- div = 0
- list_er = []
- with open('list.txt', 'r') as p:
- for line in p:
- list_er.append(eval(line))
- # print(type(eval(line)))
- with open('./error_count.csv', 'r') as f:
- rows = len(f.readlines()) - 1
- f.seek(0)
- for i, line in enumerate(f):
- if i == 0:
- continue
- if line.split(',')[0] == seed_name:
- error = int(line.split(',')[1])
- div = int(line.split(',')[2])
- return error, div, list_er
|