from configs import bcolors from utils import * from imageio import imread from imageio import imsave from PIL import Image from scipy import ndimage import sys sys.path.append("/home/vangogh/software/FuzzScene/code/") import Constants def preprocess(path, target_size): return preprocess_image(path, target_size)[0] def data_generator(xs, ys, target_size, batch_size=64): gen_state = 0 while 1: if gen_state + batch_size > len(xs): paths = xs[gen_state: len(xs)] y = ys[gen_state: len(xs)] X = [preprocess(x, target_size) for x in paths] gen_state = 0 else: paths = xs[gen_state: gen_state + batch_size] y = ys[gen_state: gen_state + batch_size] X = [preprocess(x, target_size) for x in paths] gen_state += batch_size yield np.array(X), np.array(y) def load_carla_train_data(path='', batch_size=32, shape=(100, 100)): xs = [] ys = [] start_load_time = time.time() with open(path + 'label_train.csv', 'r') as f: rows = len(f.readlines()) - 1 f.seek(0) for i, line in enumerate(f): if i == 0: continue xs.append(path + 'center/' + line.split(',')[0]) ys.append(float(line.split(',')[2])) # shuffle list of images c = list(zip(xs, ys)) random.shuffle(c) xs, ys = zip(*c) train_xs = xs train_ys = ys train_generator = data_generator(train_xs, train_ys, target_size=shape, batch_size=batch_size) print(bcolors.OKBLUE + 'finished loading data, running time: {} seconds'.format( time.time() - start_load_time) + bcolors.ENDC) return train_generator, len(train_xs) def load_carla_test_data(path='', batch_size=32, shape=(100, 100)): xs = [] ys = [] start_load_time = time.time() with open(path, 'r') as f: f.seek(0) for i, line in enumerate(f): if i == 0: continue xs.append(Constants.CARLA_RADAR_PNG_OUTPUT_PATH + line.split(',')[1]) ys.append(float(line.split(',')[3])) # shuffle list of images c = list(zip(xs, ys)) random.shuffle(c) xs, ys = zip(*c) train_xs = xs train_ys = ys train_generator = data_generator(train_xs, train_ys, target_size=shape, batch_size=batch_size) print(bcolors.OKBLUE + 'finished loading data, running time: {} seconds'.format( time.time() - start_load_time) + bcolors.ENDC) return train_generator, len(train_xs) def carla_load_steering_data(steering_log): df_steer = pd.read_csv(steering_log, usecols=['img_id', 'steering_angle_change'], index_col=False) angle = np.zeros((df_steer.shape[0], 1)) time = np.zeros((df_steer.shape[0], 1), dtype=np.int32) angle[:, 0] = df_steer['steering_angle_change'].values frame_arr = [] for frame in df_steer['img_id']: frame_arr.append(int(frame[:-4])) time[:, 0] = frame_arr data = np.append(time, angle, axis=1) return data def carla_load_frame_id(data): frame_id = [] for i in range(0, data.shape[0]): frame_id.append(int(data[i, 0])) return frame_id def normalize_input(x): return x / 255. def exact_output(y): return y def carla_read_steerings(steering_log): steerings = defaultdict(list) with open(steering_log) as f: for line in f.readlines()[1:]: fields = line.split(",") timestamp, angle = int(str(fields[1])[:-4]), float(fields[3]) steerings[timestamp].append(angle) return steerings def carla_read_images(image_folder, id, image_size): # prefix = path.join(image_folder, 'center') prefix = image_folder img_path = path.join(prefix, '%08d.png' % id) imgs = [] img = imread(img_path, pilmode='RGB') # Cropping crop_img = img[200:, :] # Resizing img = np.array(Image.fromarray(crop_img).resize(image_size)) imgs.append(img) if len(imgs) < 1: print('Error no image at timestamp') print(id) img_block = np.stack(imgs, axis=0) if K.image_data_format() == 'channels_first': img_block = np.transpose(img_block, axes=(0, 3, 1, 2)) return img_block def carla_read_images_augment(image_folder, id, image_size): # prefix = path.join(image_folder, 'center') prefix = image_folder img_path = path.join(prefix, '%08d.png' % id) imgs = [] img = imread(img_path, pilmode='RGB') # Flip image img = np.fliplr(img) # Cropping crop_img = img[200:, :] # Resizing # img = imresize(crop_img, output_shape=image_size) img = np.array(Image.fromarray(crop_img).resize(image_size)) # Rotate randomly by small amount (not a viewpoint transform) rotate = random.uniform(-1, 1) img = ndimage.rotate(img, rotate, reshape=False) imgs.append(img) if len(imgs) < 1: print('Error no image at timestamp') print(id) img_block = np.stack(imgs, axis=0) if K.image_data_format() == 'channels_first': img_block = np.transpose(img_block, axes=(0, 3, 1, 2)) return img_block def camera_adjust(angle, speed, camera): # Left camera -20 inches, right camera +20 inches (x-direction) # Steering should be correction + current steering for center camera # Chose a constant speed speed = 10.0 # Speed # Reaction time - Time to return to center # The literature seems to prefer 2.0s (probably really depends on speed) if speed < 1.0: reaction_time = 0 angle = angle else: reaction_time = 2.0 # Seconds # Trig to find angle to steer to get to center of lane in 2s opposite = 20.0 # inches adjacent = speed * reaction_time * 12.0 # inches (ft/s)*s*(12 in/ft) = inches (y-direction) angle_adj = np.arctan(float(opposite) / adjacent) # radians # Adjust based on camera being used and steering angle for center camera if camera == 'left': angle_adj = -angle_adj angle = angle_adj + angle return angle def carla_data_generator(frame_id, steering_log, image_folder, unique_list, gen_type='train', batch_size=32, image_size=(128, 128), shuffle=True, preprocess_input=normalize_input, preprocess_output=exact_output): # Read all steering angles , get map # ----------------------------------------------------------------------------- steerings = carla_read_steerings(steering_log) # Data debug info # ----------------------------------------------------------------------------- start = min(unique_list) end = max(unique_list) # print("sampling data from frame_id %d to %d" % (start, end)) # print('frame_id len: ', len(frame_id)) # print('steerings len: ', len(steerings)) # While loop for data generator # ----------------------------------------------------------------------------- # if shuffle: # random.shuffle(unique_list) i = 0 x_buffer, y_buffer, buffer_size = [], [], 0 while True: if i > end: i = start coin = random.randint(1, 2) if steerings[i] and i in frame_id: if gen_type == 'train': if coin == 1: image = carla_read_images(image_folder, i, image_size) else: image = carla_read_images_augment(image_folder, i, image_size) else: image = carla_read_images(image_folder, i, image_size) # Mean angle with a timestamp angle = np.repeat([steerings[i][0]], image.shape[0]) # Adjust steering angle for horizontal flipping if gen_type == 'train' and coin == 2: angle = -angle # Adjust the steerings of the offcenter cameras x_buffer.append(image) y_buffer.append(angle) buffer_size += image.shape[0] if buffer_size >= batch_size: indx = list(range(buffer_size)) if gen_type == 'train': np.random.shuffle(indx) x = np.concatenate(x_buffer, axis=0)[indx[:batch_size], ...] y = np.concatenate(y_buffer, axis=0)[indx[:batch_size], ...] x_buffer, y_buffer, buffer_size = [], [], 0 yield preprocess_input(x.astype(np.float32)), preprocess_output(y) if shuffle: i = int(random.choice(unique_list)) else: i += 1 while i not in unique_list: i += 1 if i > end: i = start