import cv2 import math import random import time import csv import numpy as np import pandas as pd import tensorflow as tf import skimage.transform as sktransform import matplotlib.image as mpimg from os import path from collections import defaultdict from tensorflow.keras import backend as K from tensorflow.keras.applications.imagenet_utils import preprocess_input from tensorflow.keras.models import Model from keras_preprocessing import image #test def get_start_point(orig_pixels,orig_shape,final_shape): final_pixels = [round(float(orig_pixels[0])*final_shape[0]/orig_shape[0]),round(float(orig_pixels[1])*final_shape[1]/orig_shape[1])] return final_pixels def get_occl_size(orig_start,orig_end,orig_shape,final_shape): occl_size = [max(1,round((float(orig_end[0])-float(orig_start[0]))*final_shape[0]/orig_shape[0])),max(1,round((float(orig_end[1])-float(orig_start[1]))*final_shape[1]/orig_shape[1]))] return occl_size def v3_preprocess(image, top_offset=.375, bottom_offset=.125,shape=(32,128)): """ Applies preprocessing pipeline to an image: crops `top_offset` and `bottom_offset` portions of image, resizes to 32x128 px and scales pixel values to [0, 1]. """ top = int(top_offset * image.shape[0]) bottom = int(bottom_offset * image.shape[0]) if(bottom == 0): bottom = 1 image = sktransform.resize(image[top:-bottom, :], shape) return image def draw_arrow2(img, angle1,thickness = 1): pt1 = (int(img.shape[1] / 2), img.shape[0]) pt2_angle1 = (int(img.shape[1] / 2 - img.shape[0] / 3 * math.sin(angle1)), int(img.shape[0] - img.shape[0] / 3 * math.cos(angle1))) img = cv2.arrowedLine(img, pt1, pt2_angle1, (255, 0, 0), thickness) return img def draw_arrow3(img, angle1,angle2): pt1 = (int(img.shape[1] / 2), img.shape[0]) pt2_angle1 = (int(img.shape[1] / 2 - img.shape[0] / 3 * math.sin(angle1)), int(img.shape[0] - img.shape[0] / 3 * math.cos(angle1))) pt2_angle2 = (int(img.shape[1] / 2 - img.shape[0] / 3 * math.sin(angle2)), int(img.shape[0] - img.shape[0] / 3 * math.cos(angle2))) img = cv2.arrowedLine(img, pt1, pt2_angle1, (0, 0, 255), 5) img = cv2.arrowedLine(img, pt1, pt2_angle2, (0, 255, 0), 5) return img def raw_draw_arrow3(img, angle1,angle2): pt1 = (int(img.shape[1] / 2), img.shape[0]) pt2_angle1 = (int(img.shape[1] / 2 - img.shape[0] / 3 * math.sin(angle1)), int(img.shape[0] - img.shape[0] / 3 * math.cos(angle1))) pt2_angle2 = (int(img.shape[1] / 2 - img.shape[0] / 3 * math.sin(angle2)), int(img.shape[0] - img.shape[0] / 3 * math.cos(angle2))) img = cv2.arrowedLine(img, pt1, pt2_angle1, (1, 0, 0), 1) img = cv2.arrowedLine(img, pt1, pt2_angle2, (0, 1, 0), 1) return img def draw_arrow(img, angle1, angle2, angle3): pt1 = (int(img.shape[1] / 2), img.shape[0]) pt2_angle1 = (int(img.shape[1] / 2 - img.shape[0] / 3 * math.sin(angle1)), int(img.shape[0] - img.shape[0] / 3 * math.cos(angle1))) pt2_angle2 = (int(img.shape[1] / 2 - img.shape[0] / 3 * math.sin(angle2)), int(img.shape[0] - img.shape[0] / 3 * math.cos(angle2))) pt2_angle3 = (int(img.shape[1] / 2 - img.shape[0] / 3 * math.sin(angle3)), int(img.shape[0] - img.shape[0] / 3 * math.cos(angle3))) img = cv2.arrowedLine(img, pt1, pt2_angle1, (0, 0, 255), 1) img = cv2.arrowedLine(img, pt1, pt2_angle2, (0, 255, 0), 1) img = cv2.arrowedLine(img, pt1, pt2_angle3, (255, 0, 0), 1) return img def angle_diverged(angle1, angle2, angle3): if (abs(angle1 - angle2) > 0.2 or abs(angle1 - angle3) > 0.2 or abs(angle2 - angle3) > 0.2) and not ( (angle1 > 0 and angle2 > 0 and angle3 > 0) or ( angle1 < 0 and angle2 < 0 and angle3 < 0)): return True return False def angle_diverged2(angle1, angle2): if (abs(angle1 - angle2) > 0.1) and not ( (angle1 > 0 and angle2 > 0 ) or (angle1 < 0 and angle2 < 0 )): return True return False def angle_diverged3(angle1, angle2): if (abs(angle1 - angle2) > 0.1): return True return False def preprocess_image(img_path, target_size=(100, 100)): img = image.load_img(img_path, target_size=target_size) input_img_data = image.img_to_array(img) input_img_data = np.expand_dims(input_img_data, axis=0) input_img_data = preprocess_input(input_img_data) return input_img_data def preprocess_image_v3(img_path,top_offset,bottom_offset): orig_name = image.load_img(img_path) orig_name = image.img_to_array(orig_name) orig_name = orig_name.astype(np.uint8) gen_img = v3_preprocess(orig_name,top_offset = top_offset,bottom_offset = bottom_offset) gen_img = np.expand_dims(gen_img, axis=0) return gen_img def preprocess_image_v2(img_path,top_offset,bottom_offset): orig_name = image.load_img(img_path) orig_name = image.img_to_array(orig_name) orig_name = orig_name.astype(np.uint8) gen_img = v3_preprocess(orig_name,top_offset = top_offset,bottom_offset = bottom_offset,shape=(66,200)) gen_img = np.expand_dims(gen_img, axis=0) return gen_img def deprocess_image(x,shape=(100,100,3)): tmp = x.copy() tmp = tmp.reshape(shape) # Remove zero-center by mean pixel tmp[:, :, 0] += 103.939 tmp[:, :, 1] += 116.779 tmp[:, :, 2] += 123.68 # 'BGR'->'RGB' tmp = tmp[:, :, ::-1] tmp = np.clip(tmp, 0, 255).astype('uint8') return tmp def atan_layer(x): return tf.multiply(tf.atan(x), 2) def atan_layer_shape(input_shape): return input_shape def normal_init(shape, dtype=None): return K.truncated_normal(shape, stddev=0.1) def normalize(x): # utility function to normalize a tensor by its L2 norm return x / (K.sqrt(K.mean(K.square(x))) + 1e-5) def constraint_occl(gradients, start_point, rect_shape): new_grads = np.zeros_like(gradients) new_grads[:, start_point[0]:start_point[0] + rect_shape[0], start_point[1]:start_point[1] + rect_shape[1]] = gradients[:, start_point[0]:start_point[0] + rect_shape[0], start_point[1]:start_point[1] + rect_shape[1]] return new_grads def constraint_light(gradients): new_grads = np.ones_like(gradients) grad_mean = 500 * np.mean(gradients) return grad_mean * new_grads def constraint_black(gradients, rect_shape=(10, 10)): start_point = ( random.randint(0, gradients.shape[1] - rect_shape[0]), random.randint(0, gradients.shape[2] - rect_shape[1])) new_grads = np.zeros_like(gradients) patch = gradients[:, start_point[0]:start_point[0] + rect_shape[0], start_point[1]:start_point[1] + rect_shape[1]] if np.mean(patch) < 0: new_grads[:, start_point[0]:start_point[0] + rect_shape[0], start_point[1]:start_point[1] + rect_shape[1]] = -np.ones_like(patch) return new_grads def init_coverage_tables(model1, model2, model3): model_layer_dict1 = defaultdict(bool) model_layer_dict2 = defaultdict(bool) model_layer_dict3 = defaultdict(bool) init_dict(model1, model_layer_dict1) init_dict(model2, model_layer_dict2) init_dict(model3, model_layer_dict3) return model_layer_dict1, model_layer_dict2, model_layer_dict3 def init_coverage_tables2(model1): model_layer_dict1 = defaultdict(bool) init_dict(model1, model_layer_dict1) return model_layer_dict1 def init_dict(model, model_layer_dict): for layer in model.layers: if 'flatten' in layer.name or 'input' in layer.name: continue for index in range(layer.output_shape[-1]): model_layer_dict[(layer.name, index)] = False def neuron_to_cover(model_layer_dict): not_covered = [(layer_name, index) for (layer_name, index), v in model_layer_dict.items() if not v] if not_covered: layer_name, index = random.choice(not_covered) else: layer_name, index = random.choice(model_layer_dict.keys()) return layer_name, index def neuron_covered(model_layer_dict): covered_neurons = len([v for v in model_layer_dict.values() if v]) total_neurons = len(model_layer_dict) return covered_neurons, total_neurons, covered_neurons / float(total_neurons) def scale(intermediate_layer_output, rmax=1, rmin=0): X_std = (intermediate_layer_output - intermediate_layer_output.min()) / ( intermediate_layer_output.max() - intermediate_layer_output.min()) X_scaled = X_std * (rmax - rmin) + rmin return X_scaled def update_coverage(input_data, model, model_layer_dict, threshold=0): layer_names = [layer.name for layer in model.layers if 'flatten' not in layer.name and 'input' not in layer.name] intermediate_layer_model = Model(inputs=model.input, outputs=[model.get_layer(layer_name).output for layer_name in layer_names]) intermediate_layer_outputs = intermediate_layer_model.predict(input_data) for i, intermediate_layer_output in enumerate(intermediate_layer_outputs): scaled = scale(intermediate_layer_output[0]) for num_neuron in range(scaled.shape[-1]): if np.mean(scaled[..., num_neuron]) > threshold and not model_layer_dict[(layer_names[i], num_neuron)]: model_layer_dict[(layer_names[i], num_neuron)] = True def full_coverage(model_layer_dict): if False in model_layer_dict.values(): return False return True def fired(model, layer_name, index, input_data, threshold=0): intermediate_layer_model = Model(inputs=model.input, outputs=model.get_layer(layer_name).output) intermediate_layer_output = intermediate_layer_model.predict(input_data)[0] scaled = scale(intermediate_layer_output) if np.mean(scaled[..., index]) > threshold: return True return False def diverged(predictions1, predictions2, predictions3, target): # if predictions2 == predictions3 == target and predictions1 != target: if not predictions1 == predictions2 == predictions3: return True return False def transform_occl(gradients,start_point,rect_shape,logo_data,order): new_grads = np.zeros((np.shape(gradients)[0],rect_shape[0],rect_shape[1],np.shape(gradients)[3])) new_grads = gradients[:, start_point[0]:start_point[0] + rect_shape[0],start_point[1]:start_point[1] + rect_shape[1]] for i in range(rect_shape[0]): for j in range(rect_shape[1]): logo_shape = np.shape(logo_data) logo_data[order,round(logo_shape[1]*1.00*i/(rect_shape[0])),round(logo_shape[2]*1.00*j/(rect_shape[1])),:] = new_grads[0,i,j,:] return logo_data #for pixel transform: nearest interpolation def transform_occl2(gradients,start_point,rect_shape,logo_data,order): new_grads = np.zeros((np.shape(gradients)[0],rect_shape[0],rect_shape[1],np.shape(gradients)[3])) new_grads = gradients[:, start_point[0]:start_point[0] + rect_shape[0],start_point[1]:start_point[1] + rect_shape[1]] logo_shape = np.shape(logo_data) for i in range(logo_shape[1]): for j in range(logo_shape[2]): logo_data[order,i,j,:] = new_grads[0,round(rect_shape[0]*1.00*i/(logo_shape[1])-0.5),round(rect_shape[1]*1.00*j/(logo_shape[2])-0.5),:] return logo_data #for pixel transform: linear interpolation def transform_occl3(gradients,start_point,rect_shape,logo_data,order): new_grads = np.zeros((np.shape(gradients)[0],rect_shape[0],rect_shape[1],np.shape(gradients)[3])) new_grads = gradients[:, start_point[0]:start_point[0] + rect_shape[0],start_point[1]:start_point[1] + rect_shape[1],:] logo_shape = np.shape(logo_data) #In this version (29/07/2018), we do not use own rescale code but opencv resize instead #print(np.shape(new_grads)) logo_data[order] = cv2.resize(new_grads[0], dsize=(logo_shape[2], logo_shape[1])) ''' for i in range(logo_shape[1]): for j in range(logo_shape[2]): y_approximation = rect_shape[0]*1.00*i/(logo_shape[1]) x_approximation = rect_shape[1]*1.00*j/(logo_shape[2]) y_offset = y_approximation - int(y_approximation) x_offset = x_approximation -int(x_approximation) logo_data[order,i,j,:] = new_grads[0,int(y_approximation),int(x_approximation),:] * (1-x_offset)*(1-y_offset) + \ new_grads[0,min(rect_shape[0]-1,int(y_approximation)+1),int(x_approximation),:] * (1-x_offset)*(y_offset) + \ new_grads[0,int(y_approximation),min(rect_shape[1]-1,int(x_approximation)+1),:] * (x_offset)*(1-y_offset) + \ new_grads[0,min(rect_shape[0]-1,int(y_approximation)+1),min(rect_shape[1]-1,int(x_approximation)+1),:] * (x_offset)*(y_offset) ''' return logo_data def transfrom_accurate(gradients,des_pixel,logo_data,order): des = np.array([[0.1, 0], [np.shape(logo_data[0])[1]-1, 0], [0, np.shape(logo_data[0])[0]-1], [np.shape(logo_data[0])[1]-1, np.shape(logo_data[0])[0]-1]],np.float32) transform = cv2.getPerspectiveTransform(des_pixel,des) logo_data[order] = cv2.warpPerspective(gradients,transform,( np.shape(logo_data[0])[1], np.shape(logo_data[0])[0])) return logo_data def update_image(imgs,logo,start_point,occl_size): for i in range(len(imgs)): imgs[i][0,start_point[i][0]:start_point[i][0]+occl_size[i][0],start_point[i][1]:start_point[i][1]+occl_size[i][1],:] = cv2.resize(logo,(occl_size[i][1],occl_size[i][0]))[:min(occl_size[i][0],np.shape(imgs[i])[1]-start_point[i][0]),:min(occl_size[i][1],np.shape(imgs[i])[2]-start_point[i][1])] return imgs #def accurate_logo_grad(gradients,des_pixels): def accurate_update(imgs,logo,des_pixels): src = np.array([[0, 0], [np.shape(logo)[1]-1, 0], [0, np.shape(logo)[0]-1], [np.shape(logo)[1]-1, np.shape(logo)[0]-1]],np.float32) for i in range(len(imgs)): transform = cv2.getPerspectiveTransform(src,des_pixels[i]) output = cv2.warpPerspective(logo,transform,( np.shape(imgs[i])[2], np.shape(imgs[i])[1]),flags=cv2.INTER_LINEAR ) mask = output.astype(np.bool) mask = mask.astype(np.float32) back = cv2.multiply(1.0-mask,imgs[i][0]) imgs[i][0] = np.array(cv2.add(back,np.array(output,dtype=np.float32))) return imgs def control_bound(logo): np.clip(logo[:,:,0], -103.939, 255-103.939, out=logo[:,:,0]) np.clip(logo[:,:,1], -116.779, 255-116.779, out=logo[:,:,1]) np.clip(logo[:,:,2], -123.68, 255-123.68, out=logo[:,:,2]) return logo def raw_control_bound(logo): np.clip(logo, 0, 1, out=logo) return logo def preprocess_color(color): color[0] = color[0] -103.939 color[1] = color[1] -116.779 color[2] = color[2] - 123.68 return color def total_diff(imgs,model1,angles_2): angles_diff = [] count = 0 for img in imgs: angles_diff.append(abs(model1.predict(img)[0]-angles_2[count])) count+=1 return sum(angles_diff) def gen_optimal(imgs,model1,angle3,start_points,occl_sizes): logo = np.zeros((480,640,3)) result = {"pixel_value":np.zeros([10,3]),"diff":np.zeros(10)} for blue in range(0,256,51): for green in range(0,256,51): #print("[",blue,green,":] claculated, current result is,",result) for red in range(0,256,51): logo[:,:] = preprocess_color([blue,green,red]) #imgs = accurate_update(imgs,logo,des_pixels) imgs = update_image(imgs,logo,start_points,occl_sizes) this_diff = total_diff(imgs,model1,angle3) this_diff = this_diff/len(imgs) * 180 / math.pi if(this_diff > result["diff"][0]): result["pixel_value"][0] = np.array([blue,green,red]) result["diff"][0] = this_diff index = np.argsort(result["diff"]) result["diff"] = result["diff"][index] result["pixel_value"] = result["pixel_value"][index] print(result) return preprocess_color(result["pixel_value"][-1]) def raw_gen_optimal(imgs,model1,angle3,start_points,occl_sizes): logo = np.zeros((480,640,3)) result = {"pixel_value":np.zeros([10,3]),"diff":np.zeros(10)} for blue in range(0,256,51): for green in range(0,256,51): #print("[",blue,green,":] claculated, current result is,",result) for red in range(0,256,51): logo[:,:] = [blue/255.0,green/255.0,red/255.0] #imgs = accurate_update(imgs,logo,des_pixels) imgs = update_image(imgs,logo,start_points,occl_sizes) this_diff = total_diff(imgs,model1,angle3) this_diff = this_diff/len(imgs) * 180 / math.pi if(this_diff > result["diff"][0]): result["pixel_value"][0] = np.array([blue/255.0,green/255.0,red/255.0]) result["diff"][0] = this_diff index = np.argsort(result["diff"]) result["diff"] = result["diff"][index] result["pixel_value"] = result["pixel_value"][index] print(result) return result["pixel_value"][-1] def read_input(imgs,des_pixels,occl_sizes,start_points,filelist,coordination,is_crop = False,is_all = False): if(is_crop): img_size = [600,800] else: img_size = [1080,1920] for f in sorted(filelist): orig_name = f gen_img = preprocess_image(orig_name) imgs.append(gen_img) with open(coordination) as f: if(is_all): spamreader = csv.reader(f) else: spamreader = csv.reader(f, delimiter=',', quotechar='|') for row in spamreader: if(len(row) != 9): print(len(row)) continue tmp = np.array([[float(row[2])*100.0/img_size[1],float(row[1])*100.0/img_size[0]],[float(row[6])*100.0/img_size[1],float(row[5])*100.0/img_size[0]],[float(row[4])*100.0/img_size[1],float(row[3])*100.0/img_size[0]],[float(row[8])*100.0/img_size[1],float(row[7])*100.0/img_size[0]]],np.float32) des_pixels.append(tmp) start_points.append([round(float(row[1])*100.0/img_size[0]),round(float(row[2])*100.0/img_size[1])]) occl_sizes.append([round((float(row[7])-float(row[1]))*100.0/img_size[0]),round((float(row[8])-float(row[2]))*100.0/img_size[1])]) print(coordination + " read complete") return imgs,des_pixels,occl_sizes,start_points def find_kth_max(array,k): tmp = array.flatten() tmp = abs(tmp) tmp.sort() return tmp[-k]