123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472 |
- # -*- coding: utf-8 -*-
- import copy
- import sklearn
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from torch.autograd import Variable
- import data_processor
- import logging
- fileName = './model_train.log'
- formatter = logging.Formatter('%(asctime)s [%(levelname)s] %(module)s: %(message)s',
- datefmt='%m/%d/%Y %H:%M:%S')
- handler = logging.FileHandler(filename=fileName, encoding="utf-8")
- handler.setFormatter(formatter)
- logging.basicConfig(level=logging.DEBUG, handlers=[handler])
- torch.manual_seed(123) # 保证每次运行初始化的随机数相同
- vocab_size = 5000 # 词表大小
- embedding_size = 64 # 词向量维度
- num_classes = 6 # 6分类 todo
- sentence_max_len = 64 # 单个句子的长度
- hidden_size = 16
- num_layers = 1 # 一层lstm
- num_directions = 2 # 双向lstm
- lr = 1e-3
- batch_size = 16 # batch_size 批尺寸
- epochs = 10
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
- app_names = ["决赛自主可控众测web自主可控运维管理系统", "航天中认自主可控众包测试练习赛", "趣享GIF众包测试201908试题"]
- bug_type = ["不正常退出", "功能不完整", "用户体验", "页面布局缺陷", "性能", "安全"]
- lexicon = {0: [], 1: [], 2: [], 3: [], 4: [], 5: []}
- n = 5 # 选择置信度最高的前n条数据
- m = 3 # 选择注意力权重最高的前m个词
- t1 = 3
- t2 = 8
- threshold_confidence = 0.9
- # Bi-LSTM模型
- class BiLSTMModel(nn.Module):
- # 声明带有模型参数的层
- def __init__(self, embedding_size, hidden_size, num_layers, num_directions, num_classes):
- super(BiLSTMModel, self).__init__()
- self.input_size = embedding_size
- self.hidden_size = hidden_size
- self.num_layers = num_layers
- self.num_directions = num_directions
- self.lstm = nn.LSTM(embedding_size, hidden_size, num_layers=num_layers, bidirectional=(num_directions == 2))
- # torch.nn.Sequential 类是 torch.nn 中的一种序列容器,通过在容器中嵌套各种实现神经网络中具体功能相关的类,来完成对神经网络模型的搭建,
- # 最主要的是,参数会按照我们定义好的序列自动传递下去。
- # torch.nn.Linear 类接收的参数有三个,分别是输入特征数、输出特征数和是否使用偏置,
- # 设置是否使用偏置的参数是一个布尔值,默认为 True ,即使用偏置。
- self.attention_weights_layer = nn.Sequential(
- nn.Linear(hidden_size, hidden_size), # 从hidden_size到hideen_size的线性变换
- nn.ReLU(inplace=True) # 激活函数
- )
- self.liner = nn.Linear(hidden_size, num_classes)
- self.act_func = nn.Softmax(dim=1)
- # 定义模型的前向计算,即如何根据输入x计算返回所需要的模型输出
- def forward(self, x):
- # lstm的输入维度为 [seq_len, batch, input_size]
- # x [batch_size, sentence_length, embedding_size]
- x = x.permute(1, 0, 2) # [sentence_length, batch_size, embedding_size] ,将x进行依次转置
- # 由于数据集不一定是预先设置的batch_size的整数倍,所以用size(1)获取当前数据实际的batch
- batch_size = x.size(1)
- # 设置lstm最初的前项输出
- h_0 = torch.randn(self.num_layers * self.num_directions, batch_size, self.hidden_size).to(device)
- c_0 = torch.randn(self.num_layers * self.num_directions, batch_size, self.hidden_size).to(device)
- # out[seq_len, batch, num_directions * hidden_size]。多层lstm,out只保存最后一层每个时间步t的输出h_t
- # h_n, c_n [num_laye,rs * num_directions, batch, hidden_size]
- out, (h_n, c_n) = self.lstm(x, (h_0, c_0))
- # 将双向lstm的输出拆分为前向输出和后向输出
- (forward_out, backward_out) = torch.chunk(out, 2, dim=2)
- out = forward_out + backward_out # [seq_len, batch, hidden_size]
- out = out.permute(1, 0, 2) # [batch, seq_len, hidden_size]
- # 为了使用到lstm最后一个时间步时,每层lstm的表达,用h_n生成attention的权重
- h_n = h_n.permute(1, 0, 2) # [batch, num_layers * num_directions, hidden_size]
- h_n = torch.sum(h_n, dim=1) # [batch, 1, hidden_size]
- h_n = h_n.squeeze(dim=1) # [batch, hidden_size]
- # Bi-LSTM + Attention 就是在Bi-LSTM的模型上加入Attention层,在Bi-LSTM中我们会用最后一个时序的输出向量 作为特征向量,然后进行softmax分类。Attention是先计算每个时序的权重,然后将所有时序 的向量进行加权和作为特征向量,然后进行softmax分类。在实验中,加上Attention确实对结果有所提升。
- # https://blog.csdn.net/zwqjoy/article/details/96724702
- attention_w = self.attention_weights_layer(h_n) # [batch, hidden_size]
- attention_w = attention_w.unsqueeze(dim=1) # [batch, 1, hidden_size] [16, 1, 16]
- # print(attention_w)
- attention_context = torch.bmm(attention_w, out.transpose(1, 2)) # [batch, 1, seq_len] [16 ,1, 32]
- # print(attention_context)
- softmax_w = F.softmax(attention_context, dim=-1) # [batch, 1, seq_len],权重归一化 [16, 1, 32]
- # print(softmax_w) # 这个是注意力机制的权重向量
- x = torch.bmm(softmax_w, out) # [batch, 1, hidden_size]
- x = x.squeeze(dim=1) # [batch, hidden_size]
- x = self.liner(x)
- x = self.act_func(x) # [16, 6]
- return softmax_w, x
- # 将 发展集中新预测的标签数据添加到训练集中,然后再次训练分类器
- # 这些新伪标签数据的类别分布要平衡
- # 通过基础分类器和词库共同 预测 标签的类型。
- # 这种预测 共分为两个流程:第一个是 预测发展集的标签并把预测好的数据加到训练集中
- # 第二个是 当加完所有的伪标签数据后,重新训练 基础分类器,用 新的基础分类器+最全的词库去预测 测试集
- def develop_to_train(new_labeled_data, train_features, develop_features, train_labels, develop_labels):
- for key in sorted(new_labeled_data, reverse=True):
- feature = develop_features.pop(key)
- del develop_labels[key]
- label_index = new_labeled_data[key]
- label = [0] * num_classes
- label[label_index] = 1
- train_labels.append(label)
- train_features.append(feature)
- return train_features, develop_features, train_labels, develop_labels
- # 在发展集上重新运行基础分类器,获得一组关于发展集的关键词
- # 方法 是 通过基础分类器在发展集上预测出的置信度和单词的attention 为发展集收集词库
- def test_with_lexicon(model, develop_loader, develop_feature_origin, word2index):
- model.eval() # 评估模式而非训练模式,batchNorm层和dropout层等用于优化训练而添加的网络层会被关闭,使评估时不会发生偏移
- confidence_list = [] # 总的置信度列表
- category_list = [] # 总的预判种类列表
- attention_list = [] # 总的word权重列表
- for datas, labels in develop_loader:
- datas = datas.to(device) # 将所有最开始读取数据时的tensor变量copy一份到device所指定的GPU上去,之后的运算都在GPU上进行
- softmax_w, preds = model.forward(datas)
- softmax_w = softmax_w.squeeze(dim=1) # [16, 32]
- attention = softmax_w.tolist()
- attention_list.extend(attention)
- a = preds.max(dim=1)
- confidence = a[0].tolist() # 置信度列表
- category = a[1].tolist() # 预测的类别列表
- confidence_list.extend(confidence)
- category_list.extend(category)
- confidence_dict = dict(zip(confidence_list, list(range(len(confidence_list)))))
- category_dict = dict(zip(list(range(len(category_list))), category_list))
- attention_dict = dict(zip(list(range(len(attention_list))), attention_list))
- lexicon_num = {0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0}
- for i in sorted(confidence_dict, reverse=True):
- lexicon_key = category_dict[confidence_dict[i]]
- if lexicon_num[lexicon_key] <= n: # 每个类别取置信度最高的前n条数据
- # print(str(lexicon_key) + ":" + str(i))
- lexicon_num[lexicon_key] += 1
- lexicon_value_attention = attention_dict[confidence_dict[i]]
- lexicon_value_word = develop_feature_origin[confidence_dict[i]]
- attention2word = dict(zip(lexicon_value_attention, lexicon_value_word))
- word2attention = {}
- for j in sorted(attention2word, reverse=True):
- word = list(word2index.keys())[list(word2index.values()).index(attention2word[j])]
- if word != "<unk>" and word != "<pad>":
- if word in word2attention.keys():
- word2attention[word] += j
- else:
- word2attention[word] = j
- q = 0
- for k in sorted(word2attention.items(), key=lambda kv: (kv[1], kv[0]), reverse=True):
- if q < m and k[0] not in lexicon[lexicon_key]:
- lexicon[lexicon_key].append(k[0])
- q += 1
- new_labeled_data = {}
- # 此时,已经获得了这一轮的类别词库
- # 记录下新被贴标签的数据,记录第k个数据和它新的类别,之后在发展集中剔除它,把它加到训练集
- for k in range(len(confidence_list)):
- lexicon_value_word = develop_feature_origin[k]
- match_num = [0] * num_classes
- for value_word in lexicon_value_word:
- word = list(word2index.keys())[list(word2index.values()).index(value_word)]
- if word != "<unk>" and word != "<pad>":
- for l in range(num_classes):
- if word in lexicon.get(l):
- # 会不会出现同一个词在多个类别词库中出现的问题
- match_num[l] = match_num[l] + 1
- max_num = max(match_num)
- # print(str(match_num) + "---"+ str(confidence_list[k]))
- if match_num.count(max_num) != 1:
- continue
- elif max_num >= t2:
- # 就根据词库对应的类贴标签给这个数据
- new_labeled_data[k] = match_num.index(max_num)
- elif confidence_list[k] > threshold_confidence and max_num >= t1 and max_num < t2:
- new_labeled_data[k] = category_list[k]
- # 返回被标记的数据的行数和它的新类别
- return new_labeled_data
- def test(model, test_loader, loss_func, test_feature_origin, word2index):
- model.eval()
- loss_val = 0.0
- corrects = 0.0
- confidence_list = [] # 总的置信度列表
- category_list = [] # 总的预判种类列表
- label_list = []
- for datas, labels in test_loader:
- datas = datas.to(device)
- labels = labels.to(device)
- labels_num = labels.tolist()
- label_list_tmp = []
- for label in labels_num:
- sum_label = 0
- for i in range(len(label)):
- sum_label = sum_label + label[i] * i
- label_list_tmp.append(sum_label)
- softmax_w, preds = model.forward(datas)
- a = preds.max(dim=1)
- confidence = a[0].tolist() # 置信度列表
- category = a[1].tolist() # 预测的类别列表
- confidence_list.extend(confidence)
- category_list.extend(category)
- label_list.extend(label_list_tmp)
- """
- loss = loss_func(preds, labels)
- loss_val += loss.item() * datas.size(0)
- #获取预测的最大概率出现的位置
- preds = torch.argmax(preds, dim=1)
- labels = torch.argmax(labels, dim=1)
- corrects += torch.sum(preds == labels).item()
- """
- for k in range(len(confidence_list)):
- lexicon_value_word = test_feature_origin[k]
- match_num = [0] * num_classes
- for value_word in lexicon_value_word:
- word = list(word2index.keys())[list(word2index.values()).index(value_word)]
- if word != "<unk>" and word != "<pad>":
- for l in range(num_classes):
- if word in lexicon.get(l):
- # 会不会出现同一个词在多个类别词库中出现的问题
- match_num[l] = match_num[l] + 1
- max_num = max(match_num)
- if match_num.count(max_num) != 1:
- continue
- elif max_num >= t2:
- # 就根据词库对应的类贴标签给这个数据
- category_list[k] = match_num.index(max_num)
- test_loss = 0
- test_acc = 1
- for i in range(len(category_list)):
- # print("第{}个标签: category_list: {}, label_list: {}".format(i, category_list[i], label_list[i]))
- if category_list[i] == label_list[i]:
- corrects = corrects + 1
- test_acc = corrects / len(category_list)
- print("Test Loss: {}, Test Acc: {}".format(test_loss, test_acc))
- return test_acc
- def test_origin(model, test_loader, loss_func):
- model.eval()
- loss_val = 0.0
- corrects = 0.0
- recall_all = 0
- f1_all = 0
- pre_all = 0
- for datas, labels in test_loader:
- datas = datas.to(device)
- labels = labels.to(device)
- softmax_w, preds = model.forward(datas)
- loss = loss_func(preds, labels)
- loss_val += loss.item() * datas.size(0)
- # 获取预测的最大概率出现的位置
- preds = torch.argmax(preds, dim=1)
- labels = torch.argmax(labels, dim=1)
- recall = sklearn.metrics.recall_score(labels, preds, average="macro")
- f1 = sklearn.metrics.f1_score(labels, preds, average="macro", zero_division=0)
- pre = sklearn.metrics.precision_score(labels, preds, average="macro", zero_division=0)
- corrects += torch.sum(preds == labels).item()
- recall_all += recall
- f1_all += f1
- pre_all += pre
- test_acc = corrects / len(test_loader.dataset)
- test_recall = recall_all / len(test_loader.batch_sampler)
- test_f1 = f1_all / len(test_loader.batch_sampler)
- test_pre = pre_all / len(test_loader.batch_sampler)
- # print("Test Loss: {}, Test Acc: {}".format(test_loss, test_acc))
- return test_acc, test_recall, test_f1, test_pre
- #
- def train_origin(model, train_loader, test_loader, optimizer, loss_func, epochs):
- best_val_acc = 0.0
- best_model_params = copy.deepcopy(model.state_dict())
- for epoch in range(epochs):
- model.train()
- loss_val = 0.0
- corrects = 0.0
- for datas, labels in train_loader:
- datas = datas.to(device)
- labels = labels.to(device)
- attention_w, preds = model.forward(datas) # 使用model预测数据
- loss = loss_func(preds, labels)
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
- loss_val += loss.item() * datas.size(0)
- # 获取预测的最大概率出现的位置
- preds = torch.argmax(preds, dim=1)
- labels = torch.argmax(labels, dim=1)
- corrects += torch.sum(preds == labels).item()
- train_loss = loss_val / len(train_loader.dataset)
- train_acc = corrects / len(train_loader.dataset)
- if epoch % 2 == 0:
- # print("Train Loss: {}, Train Acc: {}".format(train_loss, train_acc))
- test_acc = test_origin(model, test_loader, loss_func)[0]
- if best_val_acc < test_acc:
- best_val_acc = test_acc
- best_model_params = copy.deepcopy(model.state_dict())
- model.load_state_dict(best_model_params)
- return model
- # 从给定的训练集数据中创建一个基础分类器,训练集数据很少,数据类别分布平衡
- # 这个基础分类器过度拟合训练集??????? todo
- def train(model, train_loader, optimizer, loss_func, epochs):
- best_val_acc = 0.0
- best_model_params = copy.deepcopy(model.state_dict())
- # epoch、batch、iteration的概念 https://www.jianshu.com/p/22c50ded4cf7?from=groupmessage
- for epoch in range(epochs):
- model.train()
- loss_val = 0.0
- corrects = 0.0
- for datas, labels in train_loader:
- datas = datas.to(device)
- labels = labels.to(device)
- # print("第{}批训练数据: labels: {}".format(epoch, labels))
- attention_w, preds = model.forward(datas) # 使用model预测数据
- loss = loss_func(preds, labels)
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
- loss_val += loss.item() * datas.size(0)
- # 获取预测的最大概率出现的位置
- preds = torch.argmax(preds, dim=1)
- labels = torch.argmax(labels, dim=1)
- corrects += torch.sum(preds == labels).item()
- train_loss = loss_val / len(train_loader.dataset)
- train_acc = corrects / len(train_loader.dataset)
- # print("Train Loss: {}, Train Acc: {}".format(train_loss, train_acc))
- if best_val_acc < train_acc:
- best_val_acc = train_acc
- best_model_params = copy.deepcopy(model.state_dict())
- model.load_state_dict(best_model_params)
- return model
- if __name__ == "__main__":
- for app_name in app_names:
- processor = data_processor.DataProcessor(dataset_name=app_name)
- train_features, develop_features, test_features, train_labels, develop_labels, test_labels, word2index = processor.get_datasets_origin(
- vocab_size=vocab_size, max_len=sentence_max_len)
- train_datasets, develop_datasets, test_datasets = processor.get_datasets(train_features, develop_features,
- test_features, train_labels,
- develop_labels, test_labels,
- vocab_size=vocab_size,
- embedding_size=embedding_size)
- logging.info("开始训练模型:" + app_name)
- # train_loader是 batch_size(16)个 数据(train_features)
- logging.info("pytorch 初始化")
- train_loader = torch.utils.data.DataLoader(train_datasets, batch_size=batch_size, shuffle=False)
- develop_loader = torch.utils.data.DataLoader(develop_datasets, batch_size=batch_size, shuffle=False)
- test_loader = torch.utils.data.DataLoader(test_datasets, batch_size=batch_size, shuffle=False)
- logging.info("模型初始化")
- model = BiLSTMModel(embedding_size, hidden_size, num_layers, num_directions, num_classes)
- model = model.to(device)
- optimizer = torch.optim.Adam(model.parameters(), lr=lr)
- loss_func = nn.BCELoss()
- # 训练基础的模型
- logging.info("开始训练基础分类器")
- # model = train(model, train_loader, optimizer, loss_func, epochs)
- model = train_origin(model, train_loader, test_loader, optimizer, loss_func, epochs)
- test_acc, test_recall, test_f1, test_pre = test_origin(model, test_loader, loss_func)
- logging.info("初始分类器accuracy为{}".format(test_acc))
- logging.info("初始分类器召回率为{}".format(test_recall))
- logging.info("初始分类器precision为{}".format(test_pre))
- logging.info("初始分类器f1_score为{}".format(test_f1))
- i = 0
- while 1:
- i = i + 1
- # 从发展集中构建词库
- new_labeled_data = test_with_lexicon(model, develop_loader, develop_features, word2index)
- print("重新贴标签的数据是{}".format(new_labeled_data))
- print("现在的词库是{}".format(lexicon))
- if len(new_labeled_data) == 0:
- break
- train_features, develop_features, train_labels, develop_labels = develop_to_train(new_labeled_data,
- train_features,
- develop_features,
- train_labels,
- develop_labels)
- embed = nn.Embedding(vocab_size + 2, embedding_size) # https://www.jianshu.com/p/63e7acc5e890
- train_features_after1 = torch.LongTensor(train_features)
- train_features_after1 = embed(train_features_after1)
- train_features_after2 = Variable(train_features_after1, requires_grad=False)
- train_labels_after = torch.FloatTensor(train_labels)
- train_datasets = torch.utils.data.TensorDataset(train_features_after2, train_labels_after)
- train_loader = torch.utils.data.DataLoader(train_datasets, batch_size=batch_size, shuffle=False)
- develop_features_after1 = torch.LongTensor(develop_features)
- develop_features_after1 = embed(develop_features_after1)
- develop_features_after2 = Variable(develop_features_after1, requires_grad=False)
- develop_labels_after = torch.FloatTensor(develop_labels)
- develop_datasets = torch.utils.data.TensorDataset(develop_features_after2, develop_labels_after)
- develop_loader = torch.utils.data.DataLoader(develop_datasets, batch_size=batch_size, shuffle=False)
- logging.info("开始第{}次重训练".format(i))
- model = train_origin(model, train_loader, test_loader, optimizer, loss_func, epochs)
- model = train_origin(model, train_loader, test_loader, optimizer, loss_func, epochs)
- test_acc, test_recall, test_f1, test_pre = test_origin(model, test_loader, loss_func)
- logging.info("训练完成,测试集Accuracy为{}".format(test_acc))
- logging.info("训练完成,测试集召回率为{}".format(test_recall))
- logging.info("训练完成,测试集Precision为{}".format(test_pre))
- logging.info("训练完成,测试集f1_score为{}".format(test_f1))
- torch.save(model, "../classify_model/" + app_name + ".pth")
|