DEBUG:matplotlib:$HOME=/Users/tanghaojie DEBUG:matplotlib:matplotlib data path /Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/matplotlib/mpl-data DEBUG:matplotlib:loaded rc file /Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/matplotlib/mpl-data/matplotlibrc DEBUG:matplotlib:matplotlib version 2.2.2 DEBUG:matplotlib:interactive is False DEBUG:matplotlib:platform is darwin DEBUG:matplotlib:loaded modules: ['builtins', 'sys', '_frozen_importlib', '_imp', '_warnings', '_thread', '_weakref', '_frozen_importlib_external', '_io', 'marshal', 'posix', 'zipimport', 'encodings', 'codecs', '_codecs', 'encodings.aliases', 'encodings.utf_8', '_signal', '__main__', 'encodings.latin_1', 'io', 'abc', '_weakrefset', '_bootlocale', '_locale', 'encodings.ascii', 'site', 'os', 'errno', 'stat', '_stat', 'posixpath', 'genericpath', 'os.path', '_collections_abc', '_sitebuiltins', 'sysconfig', '_sysconfigdata_m_darwin_darwin', '_osx_support', 're', 'enum', 'types', 'functools', '_functools', 'collections', 'operator', '_operator', 'keyword', 'heapq', '_heapq', 'itertools', 'reprlib', '_collections', 'weakref', 'collections.abc', 'sre_compile', '_sre', 'sre_parse', 'sre_constants', 'copyreg', 'importlib', 'importlib._bootstrap', 'importlib._bootstrap_external', 'warnings', 'importlib.util', 'importlib.abc', 'importlib.machinery', 'contextlib', 'google', 'mpl_toolkits', 'zope', 'idlelib', 'idlelib.run', 'linecache', 'tokenize', 'token', 'queue', 'threading', 'time', 'traceback', 'tkinter', '_tkinter', 'tkinter.constants', 'idlelib.autocomplete', 'string', '_string', 'idlelib.autocomplete_w', 'platform', 'subprocess', 'signal', '_posixsubprocess', 'select', 'selectors', 'math', 'idlelib.multicall', 'idlelib.config', 'configparser', 'idlelib.hyperparser', 'idlelib.pyparse', 'idlelib.calltips', 'inspect', 'ast', '_ast', 'dis', 'opcode', '_opcode', 'textwrap', 'idlelib.calltip_w', 'idlelib.debugger_r', 'idlelib.debugger', 'bdb', 'fnmatch', 'idlelib.macosx', 'idlelib.scrolledlist', 'idlelib.windows', 'idlelib.debugobj_r', 'idlelib.rpc', 'pickle', 'struct', '_struct', '_compat_pickle', '_pickle', 'socket', '_socket', 'socketserver', 'idlelib.iomenu', 'shlex', 'tempfile', 'shutil', 'zlib', 'bz2', '_compression', '_bz2', 'lzma', '_lzma', 'pwd', 'grp', 'random', 'hashlib', '_hashlib', '_blake2', '_sha3', 'bisect', '_bisect', '_random', 'locale', 'idlelib.stackviewer', 'idlelib.debugobj', 'idlelib.tree', 'idlelib.zoomheight', 'pydoc', 'pkgutil', 'urllib', 'urllib.parse', 'copy', 'torch', 'torch._utils', 'torch._utils_internal', '__future__', 'torch.version', 'torch._six', 'numpy', 'numpy._globals', 'numpy.__config__', 'numpy.version', 'numpy._distributor_init', 'numpy.core', 'numpy.core.multiarray', 'numpy.core.overrides', 'datetime', '_datetime', 'numpy.core._multiarray_umath', 'numpy.compat', 'numpy.compat._inspect', 'numpy.compat.py3k', 'pathlib', 'ntpath', 'numpy.core.umath', 'numpy.core.numerictypes', 'numbers', 'numpy.core._string_helpers', 'numpy.core._type_aliases', 'numpy.core._dtype', 'numpy.core.numeric', 'numpy.core.shape_base', 'numpy.core._asarray', 'numpy.core.fromnumeric', 'numpy.core._methods', 'numpy.core._exceptions', 'numpy.core._ufunc_config', 'numpy.core.arrayprint', 'numpy.core.defchararray', 'numpy.core.records', 'numpy.core.memmap', 'numpy.core.function_base', 'numpy.core.machar', 'numpy.core.getlimits', 'numpy.core.einsumfunc', 'numpy.core._add_newdocs', 'numpy.core._multiarray_tests', 'numpy.core._dtype_ctypes', '_ctypes', 'ctypes', 'ctypes._endian', 'numpy.core._internal', 'numpy._pytesttester', 'numpy.lib', 'numpy.lib.mixins', 'numpy.lib.scimath', 'numpy.lib.type_check', 'numpy.lib.ufunclike', 'numpy.lib.index_tricks', 'numpy.matrixlib', 'numpy.matrixlib.defmatrix', 'numpy.linalg', 'numpy.linalg.linalg', 'numpy.lib.twodim_base', 'numpy.linalg.lapack_lite', 'numpy.linalg._umath_linalg', 'numpy.lib.function_base', 'numpy.lib.histograms', 'numpy.lib.stride_tricks', 'numpy.lib.nanfunctions', 'numpy.lib.shape_base', 'numpy.lib.polynomial', 'numpy.lib.utils', 'numpy.lib.arraysetops', 'numpy.lib.npyio', 'numpy.lib.format', 'numpy.lib._datasource', 'numpy.lib._iotools', 'numpy.lib.financial', 'decimal', '_decimal', 'numpy.lib.arrayterator', 'numpy.lib.arraypad', 'numpy.lib._version', 'numpy.fft', 'numpy.fft._pocketfft', 'numpy.fft._pocketfft_internal', 'numpy.fft.helper', 'numpy.polynomial', 'numpy.polynomial.polynomial', 'numpy.polynomial.polyutils', 'numpy.polynomial._polybase', 'numpy.polynomial.chebyshev', 'numpy.polynomial.legendre', 'numpy.polynomial.hermite', 'numpy.polynomial.hermite_e', 'numpy.polynomial.laguerre', 'numpy.random', 'numpy.random._pickle', 'numpy.random.mtrand', 'cython_runtime', 'numpy.random._bit_generator', '_cython_0_29_19', 'numpy.random._common', 'secrets', 'base64', 'binascii', 'hmac', 'numpy.random._bounded_integers', 'numpy.random._mt19937', 'numpy.random._philox', 'numpy.random._pcg64', 'numpy.random._sfc64', 'numpy.random._generator', 'numpy.ctypeslib', 'numpy.ma', 'numpy.ma.core', 'numpy.ma.extras', 'numpy.testing', 'unittest', 'unittest.result', 'unittest.util', 'unittest.case', 'difflib', 'logging', 'atexit', 'pprint', 'unittest.suite', 'unittest.loader', 'unittest.main', 'argparse', 'gettext', 'unittest.runner', 'unittest.signals', 'numpy.testing._private', 'numpy.testing._private.utils', 'gc', 'numpy.testing._private.decorators', 'numpy.testing._private.nosetester', 'torch._C._onnx', 'torch._C._jit_tree_views', 'torch._C._jit', 'torch._C', 'torch.random', 'torch.serialization', 'tarfile', 'zipfile', 'torch._tensor_str', 'torch.tensor', 'torch.utils', 'torch.utils.hooks', 'torch.storage', 'torch.cuda', 'multiprocessing', 'multiprocessing.context', 'multiprocessing.process', 'multiprocessing.reduction', 'array', '__mp_main__', 'multiprocessing.util', 'torch.cuda._utils', 'torch.cuda.random', 'torch.cuda.sparse', 'torch.cuda.profiler', 'torch.cuda.nvtx', 'glob', 'torch.cuda.streams', 'torch.sparse', 'torch.functional', 'torch.nn', 'torch.nn.modules', 'torch.nn.modules.module', 'torch.nn.backends', 'torch.nn.backends.thnn', 'torch.nn.backends.backend', 'torch.nn._functions', 'torch.nn._functions.thnn', 'torch.nn._functions.thnn.auto', 'torch._thnn', 'torch._thnn.utils', 'torch.autograd', 'torch.autograd.variable', 'torch.autograd.function', 'torch.autograd.gradcheck', 'torch.testing', 'torch.autograd.grad_mode', 'torch.autograd.anomaly_mode', 'torch.autograd.profiler', 'torch.nn._functions.thnn.auto_double_backwards', 'torch.nn._functions.thnn.auto_symbolic', 'torch.autograd._functions', 'torch.autograd._functions.tensor', 'torch.autograd._functions.utils', 'torch.nn._functions.thnn.normalization', 'torch.nn._functions.thnn.fold', 'torch.nn._functions.thnn.sparse', 'torch.nn.parameter', 'torch.nn.modules.linear', 'torch.nn.functional', 'torch.nn._reduction', 'torch._jit_internal', 'typing', 'typing.io', 'typing.re', 'torch.nn.modules.utils', 'torch.nn._functions.vision', 'torch.backends', 'torch.backends.cudnn', 'torch.nn.grad', 'torch.nn._VF', 'torch.nn.init', 'torch.nn.modules.conv', 'torch.nn.modules.activation', 'torch.nn.modules.loss', 'torch.nn.modules.container', 'torch.nn.modules.pooling', 'torch.nn.modules.batchnorm', 'torch.nn.modules.instancenorm', 'torch.nn.modules.normalization', 'torch.nn.modules.dropout', 'torch.nn.modules.padding', 'torch.nn.modules.sparse', 'torch.nn.modules.rnn', 'torch.nn.utils', 'torch.nn.utils.rnn', 'torch.nn.utils.clip_grad', 'torch.nn.utils.weight_norm', 'torch.nn.utils.convert_parameters', 'torch.nn.utils.spectral_norm', 'torch.nn.modules.pixelshuffle', 'torch.nn.modules.upsampling', 'torch.nn.modules.distance', 'torch.nn.modules.fold', 'torch.nn.modules.adaptive', 'torch.nn.parallel', 'torch.nn.parallel.parallel_apply', 'torch.nn.parallel.replicate', 'torch.cuda.comm', 'torch.cuda.nccl', 'torch.nn.parallel.data_parallel', 'torch.nn.parallel.scatter_gather', 'torch.nn.parallel._functions', 'torch.nn.parallel.distributed', 'torch.distributed', 'torch.nn.parallel.distributed_cpu', 'torch.nn.parallel.deprecated', 'torch.nn.parallel.deprecated.distributed', 'torch.distributed.deprecated', 'torch.nn.parallel.deprecated.distributed_cpu', 'torch.optim', 'torch.optim.adadelta', 'torch.optim.optimizer', 'torch.optim.adagrad', 'torch.optim.adam', 'torch.optim.sparse_adam', 'torch.optim.adamax', 'torch.optim.asgd', 'torch.optim.sgd', 'torch.optim.rprop', 'torch.optim.rmsprop', 'torch.optim.lbfgs', 'torch.optim.lr_scheduler', 'torch.multiprocessing', 'torch.multiprocessing.reductions', 'multiprocessing.resource_sharer', 'torch.multiprocessing.spawn', 'multiprocessing.connection', '_multiprocessing', 'torch.utils.backcompat', 'torch.onnx', 'torch.jit', 'torch.jit.frontend', 'torch.jit.annotations', 'torch.distributions', 'torch.distributions.bernoulli', 'torch.distributions.constraints', 'torch.distributions.exp_family', 'torch.distributions.distribution', 'torch.distributions.utils', 'torch.distributions.beta', 'torch.distributions.dirichlet', 'torch.distributions.binomial', 'torch.distributions.categorical', 'torch.distributions.cauchy', 'torch.distributions.chi2', 'torch.distributions.gamma', 'torch.distributions.constraint_registry', 'torch.distributions.transforms', 'torch.distributions.exponential', 'torch.distributions.fishersnedecor', 'torch.distributions.geometric', 'torch.distributions.gumbel', 'torch.distributions.uniform', 'torch.distributions.transformed_distribution', 'torch.distributions.half_cauchy', 'torch.distributions.half_normal', 'torch.distributions.normal', 'torch.distributions.independent', 'torch.distributions.kl', 'torch.distributions.laplace', 'torch.distributions.logistic_normal', 'torch.distributions.lowrank_multivariate_normal', 'torch.distributions.multivariate_normal', 'torch.distributions.one_hot_categorical', 'torch.distributions.pareto', 'torch.distributions.poisson', 'torch.distributions.log_normal', 'torch.distributions.multinomial', 'torch.distributions.negative_binomial', 'torch.distributions.relaxed_bernoulli', 'torch.distributions.relaxed_categorical', 'torch.distributions.studentT', 'torch.distributions.weibull', 'torch.backends.cuda', 'torch.backends.mkl', 'torch._torch_docs', 'torch._tensor_docs', 'torch._storage_docs', 'torch._ops', 'data_processor', 'torch.utils.data', 'torch.utils.data.sampler', 'torch.utils.data.distributed', 'torch.utils.data.dataset', 'torch.utils.data.dataloader', 'sklearn', 'sklearn._config', 'sklearn._distributor_init', 'sklearn.__check_build', 'sklearn.__check_build._check_build', 'sklearn.base', 'sklearn.utils', 'timeit', 'scipy', 'scipy._lib', 'scipy._lib._testutils', 'scipy._lib.deprecation', 'scipy._distributor_init', 'scipy.__config__', 'scipy.version', 'scipy._lib._version', 'scipy._lib.six', 'scipy._lib._ccallback', 'scipy._lib._ccallback_c', 'scipy.fft', 'scipy.fft._basic', 'scipy._lib.uarray', 'scipy._lib._uarray', 'scipy._lib._uarray._backend', 'scipy._lib._uarray._uarray', 'scipy.fft._realtransforms', 'scipy.fft._helper', 'scipy.fft._pocketfft', 'scipy.fft._pocketfft.basic', 'scipy.fft._pocketfft.pypocketfft', 'scipy.fft._pocketfft.helper', 'scipy.fft._pocketfft.realtransforms', 'scipy.fft._backend', 'numpy.dual', 'scipy.sparse', 'scipy.sparse.base', 'scipy._lib._numpy_compat', 'scipy.sparse.sputils', 'scipy.sparse.csr', 'scipy.sparse._sparsetools', 'scipy.sparse.compressed', 'scipy._lib._util', 'scipy.sparse.data', 'scipy.sparse.dia', 'scipy.sparse._index', 'scipy.sparse.csc', 'scipy.sparse.lil', 'scipy.sparse._csparsetools', 'scipy.sparse.dok', 'scipy.sparse.coo', 'scipy.sparse.bsr', 'scipy.sparse.construct', 'scipy.sparse.extract', 'scipy.sparse._matrix_io', 'scipy.sparse.csgraph', 'scipy.sparse.csgraph._laplacian', 'scipy.sparse.csgraph._shortest_path', '_cython_0_29_13', 'scipy.sparse.csgraph._validation', 'scipy.sparse.csgraph._tools', 'scipy.sparse.csgraph._traversal', 'scipy.sparse.csgraph._min_spanning_tree', 'scipy.sparse.csgraph._flow', 'scipy.sparse.csgraph._matching', 'scipy.sparse.csgraph._reordering', 'sklearn.utils.murmurhash', 'sklearn.utils.class_weight', 'sklearn.utils._joblib', 'joblib', 'joblib.memory', 'joblib.hashing', 'joblib._compat', 'joblib.func_inspect', 'joblib.logger', 'joblib.disk', 'joblib._memory_helpers', 'joblib._store_backends', 'json', 'json.decoder', 'json.scanner', '_json', 'json.encoder', 'joblib.backports', 'distutils', 'distutils.version', 'joblib.numpy_pickle', 'joblib.compressor', 'joblib.numpy_pickle_utils', 'joblib.numpy_pickle_compat', 'joblib.parallel', 'joblib._multiprocessing_helpers', 'joblib.format_stack', 'joblib.my_exceptions', 'joblib._parallel_backends', 'joblib.pool', 'joblib._memmapping_reducer', 'mmap', 'uuid', 'ctypes.util', 'ctypes.macholib', 'ctypes.macholib.dyld', 'ctypes.macholib.framework', 'ctypes.macholib.dylib', 'multiprocessing.pool', 'joblib.executor', 'joblib.externals', 'joblib.externals.loky', 'joblib.externals.loky._base', 'concurrent', 'concurrent.futures', 'concurrent.futures._base', 'concurrent.futures.process', 'concurrent.futures.thread', 'joblib.externals.loky.backend', 'joblib.externals.loky.backend.context', 'joblib.externals.loky.backend.process', 'joblib.externals.loky.backend.compat', 'joblib.externals.loky.backend.compat_posix', 'multiprocessing.synchronize', 'joblib.externals.loky.backend.reduction', 'joblib.externals.loky.backend._posix_reduction', 'joblib.externals.cloudpickle', 'joblib.externals.cloudpickle.cloudpickle', 'joblib.externals.loky.reusable_executor', 'joblib.externals.loky.process_executor', 'joblib.externals.loky.backend.queues', 'multiprocessing.queues', 'joblib.externals.loky.backend.utils', 'joblib.externals.loky.cloudpickle_wrapper', 'sklearn.exceptions', 'sklearn.utils.deprecation', 'sklearn.utils.fixes', 'scipy.stats', 'scipy.stats.stats', 'scipy.spatial', 'scipy.spatial.kdtree', 'scipy.spatial.ckdtree', 'scipy.spatial.qhull', 'scipy._lib.messagestream', 'scipy.spatial._spherical_voronoi', 'scipy.spatial._voronoi', 'scipy.spatial._plotutils', 'scipy._lib.decorator', 'scipy.spatial._procrustes', 'scipy.linalg', 'scipy.linalg.linalg_version', 'scipy.linalg.misc', 'scipy.linalg.blas', 'scipy.linalg._fblas', 'scipy.linalg.lapack', 'scipy.linalg._flapack', 'scipy.linalg.basic', 'scipy.linalg.flinalg', 'scipy.linalg._flinalg', 'scipy.linalg.decomp', 'scipy.linalg.decomp_svd', 'scipy.linalg._solve_toeplitz', 'scipy.linalg.decomp_lu', 'scipy.linalg._decomp_ldl', 'scipy.linalg.decomp_cholesky', 'scipy.linalg.decomp_qr', 'scipy.linalg._decomp_qz', 'scipy.linalg.decomp_schur', 'scipy.linalg._decomp_polar', 'scipy.linalg.matfuncs', 'scipy.linalg.special_matrices', 'scipy.linalg._expm_frechet', 'scipy.linalg._matfuncs_sqrtm', 'scipy.linalg._solvers', 'scipy.linalg._procrustes', 'scipy.linalg._decomp_update', 'scipy.linalg.cython_blas', 'scipy.linalg.cython_lapack', 'scipy.linalg._sketches', 'scipy.spatial.distance', 'scipy.spatial._distance_wrap', 'scipy.spatial._hausdorff', 'scipy.special', 'scipy.special.sf_error', 'scipy.special._ufuncs', 'scipy.special._ufuncs_cxx', 'scipy.special._basic', 'scipy.special.specfun', 'scipy.special.orthogonal', 'scipy.special._comb', 'scipy.special._logsumexp', 'scipy.special.spfun_stats', 'scipy.special._ellip_harm', 'scipy.special._ellip_harm_2', 'scipy.special.lambertw', 'scipy.special._spherical_bessel', 'scipy.spatial.transform', 'scipy.spatial.transform.rotation', 'scipy.spatial.transform._rotation_groups', 'scipy.constants', 'scipy.constants.codata', 'scipy.constants.constants', 'scipy.spatial.transform._rotation_spline', 'scipy.ndimage', 'scipy.ndimage.filters', 'scipy.ndimage._ni_support', 'scipy.ndimage._nd_image', 'scipy.ndimage._ni_docstrings', 'scipy._lib.doccer', 'scipy.ndimage.fourier', 'scipy.ndimage.interpolation', 'scipy.ndimage.measurements', 'scipy.ndimage._ni_label', '_ni_label', 'scipy.ndimage.morphology', 'scipy.stats.distributions', 'scipy.stats._distn_infrastructure', 'scipy.stats._distr_params', 'scipy.optimize', 'scipy.optimize.optimize', 'scipy.optimize.linesearch', 'scipy.optimize.minpack2', 'scipy.optimize._minimize', 'scipy.optimize._trustregion_dogleg', 'scipy.optimize._trustregion', 'scipy.optimize._trustregion_ncg', 'scipy.optimize._trustregion_krylov', 'scipy.optimize._trlib', 'scipy.optimize._trlib._trlib', 'scipy.optimize._trustregion_exact', 'scipy.optimize._trustregion_constr', 'scipy.optimize._trustregion_constr.minimize_trustregion_constr', 'scipy.sparse.linalg', 'scipy.sparse.linalg.isolve', 'scipy.sparse.linalg.isolve.iterative', 'scipy.sparse.linalg.isolve._iterative', 'scipy.sparse.linalg.interface', 'scipy.sparse.linalg.isolve.utils', 'scipy._lib._threadsafety', 'scipy.sparse.linalg.isolve.minres', 'scipy.sparse.linalg.isolve.lgmres', 'scipy.sparse.linalg.isolve._gcrotmk', 'scipy.sparse.linalg.isolve.lsqr', 'scipy.sparse.linalg.isolve.lsmr', 'scipy.sparse.linalg.dsolve', 'scipy.sparse.linalg.dsolve.linsolve', 'scipy.sparse.linalg.dsolve._superlu', 'scipy.sparse.linalg.dsolve._add_newdocs', 'scipy.sparse.linalg.eigen', 'scipy.sparse.linalg.eigen.arpack', 'scipy.sparse.linalg.eigen.arpack.arpack', 'scipy.sparse.linalg.eigen.arpack._arpack', 'scipy.sparse.linalg.eigen.lobpcg', 'scipy.sparse.linalg.eigen.lobpcg.lobpcg', 'scipy.sparse.linalg.matfuncs', 'scipy.sparse.linalg._expm_multiply', 'scipy.sparse.linalg._onenormest', 'scipy.sparse.linalg._norm', 'scipy.optimize._differentiable_functions', 'scipy.optimize._numdiff', 'scipy.optimize._group_columns', 'scipy.optimize._hessian_update_strategy', 'scipy.optimize._constraints', 'scipy.optimize._trustregion_constr.equality_constrained_sqp', 'scipy.optimize._trustregion_constr.projections', 'scipy.optimize._trustregion_constr.qp_subproblem', 'scipy.optimize._trustregion_constr.canonical_constraint', 'scipy.optimize._trustregion_constr.tr_interior_point', 'scipy.optimize._trustregion_constr.report', 'scipy.optimize.lbfgsb', 'scipy.optimize._lbfgsb', 'scipy.optimize.tnc', 'scipy.optimize.moduleTNC', 'scipy.optimize.cobyla', 'scipy.optimize._cobyla', 'scipy.optimize.slsqp', 'scipy.optimize._slsqp', 'scipy.optimize._root', 'scipy.optimize.minpack', 'scipy.optimize._minpack', 'scipy.optimize._lsq', 'scipy.optimize._lsq.least_squares', 'scipy.optimize._lsq.trf', 'scipy.optimize._lsq.common', 'scipy.optimize._lsq.dogbox', 'scipy.optimize._lsq.lsq_linear', 'scipy.optimize._lsq.trf_linear', 'scipy.optimize._lsq.givens_elimination', 'scipy.optimize._lsq.bvls', 'scipy.optimize._spectral', 'scipy.optimize.nonlin', 'scipy.optimize._root_scalar', 'scipy.optimize.zeros', 'scipy.optimize._zeros', 'scipy.optimize.nnls', 'scipy.optimize._nnls', 'scipy.optimize._basinhopping', 'scipy.optimize._linprog', 'scipy.optimize._linprog_ip', 'scipy.optimize._linprog_util', 'scipy.optimize._remove_redundancy', 'scipy.optimize._linprog_simplex', 'scipy.optimize._linprog_rs', 'scipy.optimize._bglu_dense', 'scipy.optimize._lsap', 'scipy.optimize._lsap_module', 'scipy.optimize._differentialevolution', 'scipy.optimize._shgo', 'scipy.optimize._shgo_lib', 'scipy.optimize._shgo_lib.sobol_seq', 'scipy.optimize._shgo_lib.triangulation', 'scipy.optimize._dual_annealing', 'scipy.integrate', 'scipy.integrate.quadrature', 'scipy.integrate.odepack', 'scipy.integrate._odepack', 'scipy.integrate.quadpack', 'scipy.integrate._quadpack', 'scipy.integrate._ode', 'scipy.integrate.vode', 'scipy.integrate._dop', 'scipy.integrate.lsoda', 'scipy.integrate._bvp', 'scipy.integrate._ivp', 'scipy.integrate._ivp.ivp', 'scipy.integrate._ivp.bdf', 'scipy.integrate._ivp.common', 'scipy.integrate._ivp.base', 'scipy.integrate._ivp.radau', 'scipy.integrate._ivp.rk', 'scipy.integrate._ivp.dop853_coefficients', 'scipy.integrate._ivp.lsoda', 'scipy.integrate._quad_vec', 'scipy.misc', 'scipy.misc.doccer', 'scipy.misc.common', 'scipy.stats._constants', 'scipy.stats._continuous_distns', 'scipy.interpolate', 'scipy.interpolate.interpolate', 'scipy.interpolate.fitpack', 'scipy.interpolate._fitpack_impl', 'scipy.interpolate._fitpack', 'scipy.interpolate.dfitpack', 'scipy.interpolate._bsplines', 'scipy.interpolate._bspl', 'scipy.interpolate.polyint', 'scipy.interpolate._ppoly', 'scipy.interpolate.fitpack2', 'scipy.interpolate.interpnd', 'scipy.interpolate.rbf', 'scipy.interpolate._cubic', 'scipy.interpolate.ndgriddata', 'scipy.interpolate._pade', 'scipy.stats._stats', 'scipy.stats._tukeylambda_stats', 'scipy.stats._discrete_distns', 'scipy.stats.mstats_basic', 'scipy.stats._stats_mstats_common', 'scipy.stats._rvs_sampling', 'scipy.stats._hypotests', 'scipy.stats.morestats', 'scipy.stats.statlib', 'scipy.stats.contingency', 'scipy.stats._binned_statistic', 'scipy.stats.kde', 'scipy.stats.mvn', 'scipy.stats.mstats', 'scipy.stats.mstats_extras', 'scipy.stats._multivariate', 'sklearn.externals', 'sklearn.externals._scipy_linalg', 'sklearn.utils.validation', 'sklearn.utils._show_versions', 'sklearn.utils._openmp_helpers', 'sklearn.model_selection', 'sklearn.model_selection._split', 'sklearn.utils.multiclass', 'sklearn.model_selection._validation', 'sklearn.utils.metaestimators', 'sklearn.metrics', 'sklearn.metrics._ranking', 'sklearn.utils.extmath', 'sklearn.utils._logistic_sigmoid', 'sklearn.utils.sparsefuncs_fast', '_cython_0_29_14', 'sklearn.utils.sparsefuncs', 'sklearn.preprocessing', 'sklearn.preprocessing._function_transformer', 'sklearn.preprocessing._data', 'sklearn.preprocessing._csr_polynomial_expansion', 'sklearn.preprocessing._encoders', 'sklearn.preprocessing._label', 'sklearn.preprocessing._discretization', 'sklearn.metrics._base', 'sklearn.metrics._classification', 'sklearn.metrics.cluster', 'sklearn.metrics.cluster._supervised', 'sklearn.metrics.cluster._expected_mutual_info_fast', 'sklearn.metrics.cluster._unsupervised', 'sklearn.metrics.pairwise', 'sklearn.utils._mask', 'sklearn.metrics._pairwise_fast', 'sklearn.metrics.cluster._bicluster', 'sklearn.metrics._regression', 'sklearn.metrics._scorer', 'sklearn.metrics._plot', 'sklearn.metrics._plot.roc_curve', 'sklearn.metrics._plot.base', 'sklearn.metrics._plot.precision_recall_curve', 'sklearn.metrics._plot.confusion_matrix', 'sklearn.model_selection._search', 'sklearn.utils.random', 'sklearn.utils._random', 'pymysql', 'pymysql._compat', 'pymysql.constants', 'pymysql.constants.FIELD_TYPE', 'pymysql.converters', 'pymysql.constants.FLAG', 'pymysql.charset', 'pymysql.err', 'pymysql.constants.ER', 'pymysql.times', 'pymysql.connections', 'pymysql._auth', 'pymysql.constants.CLIENT', 'cryptography', 'cryptography.__about__', 'cryptography.hazmat', 'cryptography.hazmat.backends', 'cryptography.hazmat.primitives', 'cryptography.hazmat.primitives.serialization', 'cryptography.hazmat.primitives._serialization', 'cryptography.hazmat.primitives.serialization.base', 'cryptography.hazmat._types', 'cryptography.hazmat.primitives.asymmetric', 'cryptography.hazmat.primitives.asymmetric.dsa', 'cryptography.utils', 'cryptography.hazmat.primitives.hashes', 'cryptography.exceptions', 'cryptography.hazmat.backends.interfaces', 'cryptography.hazmat.primitives.asymmetric.utils', 'cryptography.hazmat._der', 'cryptography.hazmat.primitives.asymmetric.ec', 'cryptography.hazmat._oid', 'cryptography.hazmat.primitives.asymmetric.ed25519', 'cryptography.hazmat.primitives.asymmetric.ed448', 'cryptography.hazmat.primitives.asymmetric.rsa', 'cryptography.hazmat.primitives._asymmetric', 'cryptography.hazmat.primitives.asymmetric.dh', 'cryptography.hazmat.primitives.serialization.ssh', 'cryptography.hazmat.primitives.ciphers', 'cryptography.hazmat.primitives.ciphers.base', 'cryptography.hazmat.primitives._cipheralgorithm', 'cryptography.hazmat.primitives.ciphers.modes', 'cryptography.hazmat.primitives.ciphers.algorithms', 'cryptography.hazmat.primitives.asymmetric.padding', 'pymysql.constants.COMMAND', 'pymysql.constants.CR', 'pymysql.constants.SERVER_STATUS', 'pymysql.cursors', 'pymysql.optionfile', 'pymysql.protocol', 'pymysql.util', 'ssl', 'ipaddress', '_ssl', 'getpass', 'termios', 'classifyer', 'xlrd', 'xlrd.info', 'xlrd.timemachine', 'xlrd.biffh', 'xlrd.formula', 'xlrd.book', 'xlrd.sheet', 'xlrd.formatting', 'xlrd.compdoc', 'xlrd.xldate', 'xlrd.xlsx', 'character_processor', 'pyltp', 'bilstm_attention', 'nlpcda', 'nlpcda.tools', 'nlpcda.tools.Homophone', 'nlpcda.tools.Basetool', 'nlpcda.config', 'jieba', 'jieba.finalseg', 'jieba._compat', 'pkg_resources', 'plistlib', 'xml', 'xml.parsers', 'xml.parsers.expat', 'pyexpat.errors', 'pyexpat.model', 'pyexpat', 'xml.parsers.expat.model', 'xml.parsers.expat.errors', 'email', 'email.parser', 'email.feedparser', 'email.errors', 'email._policybase', 'email.header', 'email.quoprimime', 'email.base64mime', 'email.charset', 'email.encoders', 'quopri', 'email.utils', 'email._parseaddr', 'calendar', 'pkg_resources.extern', 'pkg_resources._vendor', 'pkg_resources._vendor.appdirs', 'pkg_resources.extern.appdirs', 'pkg_resources._vendor.packaging', 'pkg_resources._vendor.packaging.__about__', 'pkg_resources.extern.packaging', 'pkg_resources.extern.packaging.version', 'pkg_resources.extern.packaging._structures', 'pkg_resources.extern.packaging._typing', 'pkg_resources.extern.packaging.specifiers', 'pkg_resources.extern.packaging._compat', 'pkg_resources.extern.packaging.utils', 'pkg_resources.extern.packaging.requirements', 'pkg_resources._vendor.pyparsing', 'pkg_resources.extern.pyparsing', 'pkg_resources.extern.packaging.markers', 'jieba.finalseg.prob_start', 'jieba.finalseg.prob_trans', 'jieba.finalseg.prob_emit', 'nlpcda.tools.Ner', 'nlpcda.tools.Random_delete_char', 'nlpcda.tools.Random_word', 'nlpcda.tools.Similar_word', 'nlpcda.tools.Char_position_exchange', 'nlpcda.tools.Translate', 'requests', 'urllib3', 'urllib3.connectionpool', 'urllib3.exceptions', 'urllib3.packages', 'urllib3.packages.ssl_match_hostname', 'urllib3.packages.six', 'urllib3.packages.six.moves', 'http', 'http.client', 'email.message', 'uu', 'email._encoded_words', 'email.iterators', 'urllib3.packages.six.moves.http_client', 'urllib3.connection', 'urllib3.util', 'urllib3.util.connection', 'urllib3.util.wait', 'urllib3.contrib', 'urllib3.contrib._appengine_environ', 'urllib3.util.request', 'urllib3.util.response', 'urllib3.util.ssl_', 'urllib3.util.url', 'urllib3.util.timeout', 'urllib3.util.retry', 'urllib3._collections', 'urllib3.request', 'urllib3.filepost', 'urllib3.fields', 'mimetypes', 'urllib3.packages.six.moves.urllib', 'urllib3.packages.six.moves.urllib.parse', 'urllib3.response', 'urllib3.util.queue', 'urllib3.poolmanager', 'chardet', 'chardet.compat', 'chardet.universaldetector', 'chardet.charsetgroupprober', 'chardet.enums', 'chardet.charsetprober', 'chardet.escprober', 'chardet.codingstatemachine', 'chardet.escsm', 'chardet.latin1prober', 'chardet.mbcsgroupprober', 'chardet.utf8prober', 'chardet.mbcssm', 'chardet.sjisprober', 'chardet.mbcharsetprober', 'chardet.chardistribution', 'chardet.euctwfreq', 'chardet.euckrfreq', 'chardet.gb2312freq', 'chardet.big5freq', 'chardet.jisfreq', 'chardet.jpcntx', 'chardet.eucjpprober', 'chardet.gb2312prober', 'chardet.euckrprober', 'chardet.cp949prober', 'chardet.big5prober', 'chardet.euctwprober', 'chardet.sbcsgroupprober', 'chardet.sbcharsetprober', 'chardet.langcyrillicmodel', 'chardet.langgreekmodel', 'chardet.langbulgarianmodel', 'chardet.langthaimodel', 'chardet.langhebrewmodel', 'chardet.hebrewprober', 'chardet.langturkishmodel', 'chardet.version', 'requests.exceptions', 'urllib3.contrib.pyopenssl', 'OpenSSL', 'OpenSSL.crypto', 'six', 'cryptography.x509', 'cryptography.x509.certificate_transparency', 'cryptography.x509.base', 'cryptography.x509.extensions', 'cryptography.hazmat.primitives.constant_time', 'cryptography.x509.general_name', 'cryptography.x509.name', 'cryptography.x509.oid', 'OpenSSL._util', 'cryptography.hazmat.bindings', 'cryptography.hazmat.bindings.openssl', 'cryptography.hazmat.bindings.openssl.binding', '_cffi_backend', '_openssl.lib', '_openssl', 'cryptography.hazmat.bindings._openssl', 'cryptography.hazmat.bindings.openssl._conditional', 'OpenSSL.SSL', 'OpenSSL.version', 'cryptography.hazmat.backends.openssl', 'cryptography.hazmat.backends.openssl.backend', 'cryptography.hazmat.backends.openssl.aead', 'cryptography.hazmat.backends.openssl.ciphers', 'cryptography.hazmat.backends.openssl.cmac', 'cryptography.hazmat.backends.openssl.decode_asn1', 'cryptography.hazmat.backends.openssl.dh', 'cryptography.hazmat.backends.openssl.dsa', 'cryptography.hazmat.backends.openssl.utils', 'cryptography.hazmat.backends.openssl.ec', 'cryptography.hazmat.backends.openssl.ed25519', 'cryptography.hazmat.backends.openssl.ed448', 'cryptography.hazmat.backends.openssl.encode_asn1', 'cryptography.hazmat.backends.openssl.hashes', 'cryptography.hazmat.backends.openssl.hmac', 'cryptography.hazmat.backends.openssl.ocsp', 'cryptography.hazmat.backends.openssl.x509', 'cryptography.hazmat.backends.openssl.rsa', 'cryptography.x509.ocsp', 'cryptography.hazmat.backends.openssl.poly1305', 'cryptography.hazmat.backends.openssl.x25519', 'cryptography.hazmat.primitives.asymmetric.x25519', 'cryptography.hazmat.backends.openssl.x448', 'cryptography.hazmat.primitives.asymmetric.x448', 'cryptography.hazmat.primitives.kdf', 'cryptography.hazmat.primitives.kdf.scrypt', 'cryptography.hazmat.primitives.serialization.pkcs7', 'urllib3.packages.backports', 'urllib3.packages.backports.makefile', 'requests.__version__', 'requests.utils', 'requests.certs', 'certifi', 'certifi.core', 'requests._internal_utils', 'requests.compat', 'urllib.request', 'urllib.error', 'urllib.response', '_scproxy', 'http.cookiejar', 'http.cookies', 'requests.cookies', 'requests.structures', 'requests.packages', 'requests.packages.urllib3', 'requests.packages.urllib3.connectionpool', 'requests.packages.urllib3.exceptions', 'requests.packages.urllib3.packages', 'requests.packages.urllib3.packages.ssl_match_hostname', 'requests.packages.urllib3.packages.six', 'requests.packages.urllib3.packages.six.moves', 'requests.packages.urllib3.packages.six.moves.http_client', 'requests.packages.urllib3.connection', 'requests.packages.urllib3.util', 'requests.packages.urllib3.util.connection', 'requests.packages.urllib3.util.wait', 'requests.packages.urllib3.contrib', 'requests.packages.urllib3.contrib._appengine_environ', 'requests.packages.urllib3.util.request', 'requests.packages.urllib3.util.response', 'requests.packages.urllib3.util.ssl_', 'requests.packages.urllib3.util.url', 'requests.packages.urllib3.util.timeout', 'requests.packages.urllib3.util.retry', 'requests.packages.urllib3._collections', 'requests.packages.urllib3.request', 'requests.packages.urllib3.filepost', 'requests.packages.urllib3.fields', 'requests.packages.urllib3.packages.six.moves.urllib', 'requests.packages.urllib3.packages.six.moves.urllib.parse', 'requests.packages.urllib3.response', 'requests.packages.urllib3.util.queue', 'requests.packages.urllib3.poolmanager', 'requests.packages.urllib3.contrib.pyopenssl', 'requests.packages.urllib3.packages.backports', 'requests.packages.urllib3.packages.backports.makefile', 'idna', 'idna.package_data', 'idna.core', 'idna.idnadata', 'unicodedata', 'idna.intranges', 'requests.packages.idna', 'requests.packages.idna.package_data', 'requests.packages.idna.core', 'requests.packages.idna.idnadata', 'requests.packages.idna.intranges', 'requests.packages.chardet', 'requests.packages.chardet.compat', 'requests.packages.chardet.universaldetector', 'requests.packages.chardet.charsetgroupprober', 'requests.packages.chardet.enums', 'requests.packages.chardet.charsetprober', 'requests.packages.chardet.escprober', 'requests.packages.chardet.codingstatemachine', 'requests.packages.chardet.escsm', 'requests.packages.chardet.latin1prober', 'requests.packages.chardet.mbcsgroupprober', 'requests.packages.chardet.utf8prober', 'requests.packages.chardet.mbcssm', 'requests.packages.chardet.sjisprober', 'requests.packages.chardet.mbcharsetprober', 'requests.packages.chardet.chardistribution', 'requests.packages.chardet.euctwfreq', 'requests.packages.chardet.euckrfreq', 'requests.packages.chardet.gb2312freq', 'requests.packages.chardet.big5freq', 'requests.packages.chardet.jisfreq', 'requests.packages.chardet.jpcntx', 'requests.packages.chardet.eucjpprober', 'requests.packages.chardet.gb2312prober', 'requests.packages.chardet.euckrprober', 'requests.packages.chardet.cp949prober', 'requests.packages.chardet.big5prober', 'requests.packages.chardet.euctwprober', 'requests.packages.chardet.sbcsgroupprober', 'requests.packages.chardet.sbcharsetprober', 'requests.packages.chardet.langcyrillicmodel', 'requests.packages.chardet.langgreekmodel', 'requests.packages.chardet.langbulgarianmodel', 'requests.packages.chardet.langthaimodel', 'requests.packages.chardet.langhebrewmodel', 'requests.packages.chardet.hebrewprober', 'requests.packages.chardet.langturkishmodel', 'requests.packages.chardet.version', 'requests.models', 'encodings.idna', 'stringprep', 'requests.hooks', 'requests.auth', 'requests.status_codes', 'requests.api', 'requests.sessions', 'requests.adapters', 'nlpcda.tools.Equivalent_char', 'nlpcda.tools.Simbert', 'nlpcda.tools.simbert', 'nlpcda.tools.simbert.generator', 'bert4keras', 'bert4keras.backend', 'distutils.util', 'distutils.errors', 'distutils.dep_util', 'distutils.spawn', 'distutils.debug', 'distutils.log', 'distutils.sysconfig', 'tensorflow', 'tensorflow._api', 'tensorflow.python', 'tensorflow.tools', 'tensorflow.core', 'tensorflow.compiler', 'tensorflow.lite', 'tensorflow.keras', 'tensorflow.compat', 'tensorflow.summary', 'tensorflow.examples', 'tensorflow.estimator', 'tensorflow_core', 'tensorflow_core.python', 'tensorflow_core.python.pywrap_tensorflow', 'tensorflow.python.platform', 'tensorflow.python.platform.self_check', 'tensorflow.python.platform.build_info', 'tensorflow.python.pywrap_tensorflow_internal', 'imp', 'swig_runtime_data4', '_pywrap_tensorflow_internal', 'tensorflow_core.python._pywrap_utils', 'tensorflow_core.python._pywrap_tfprof', 'tensorflow_core.python._pywrap_events_writer', 'tensorflow_core.python._pywrap_util_port', 'tensorflow_core.python._pywrap_stat_summarizer', 'tensorflow_core.python._pywrap_py_exception_registry', 'tensorflow_core.python._pywrap_kernel_registry', 'tensorflow_core.python._pywrap_quantize_training', 'tensorflow_core.python._pywrap_scoped_annotation', 'tensorflow_core.python._pywrap_transform_graph', 'tensorflow_core.python._pywrap_traceme', 'tensorflow_core.python._pywrap_stacktrace_handler', 'tensorflow_core.core', 'tensorflow.core.framework', 'tensorflow.core.framework.graph_pb2', 'google.protobuf', 'google.protobuf.descriptor', 'google.protobuf.internal', 'google.protobuf.internal.api_implementation', 'google.protobuf.internal._api_implementation', 'google.protobuf.pyext', 'google.protobuf.internal.containers', 'google.protobuf.internal.enum_type_wrapper', 'google.protobuf.message', 'google.protobuf.pyext._message', 'google.protobuf.reflection', 'google.protobuf.message_factory', 'google.protobuf.descriptor_pool', 'google.protobuf.descriptor_database', 'google.protobuf.text_encoding', 'google.protobuf.pyext.cpp_message', 'google.protobuf.symbol_database', 'tensorflow.core.framework.node_def_pb2', 'tensorflow.core.framework.attr_value_pb2', 'tensorflow.core.framework.tensor_pb2', 'tensorflow.core.framework.resource_handle_pb2', 'tensorflow.core.framework.tensor_shape_pb2', 'google.protobuf.internal.well_known_types', 'tensorflow.core.framework.types_pb2', 'tensorflow.core.framework.function_pb2', 'tensorflow.core.framework.op_def_pb2', 'tensorflow.core.framework.versions_pb2', 'tensorflow.core.framework.summary_pb2', 'tensorflow.core.protobuf', 'tensorflow.core.protobuf.meta_graph_pb2', 'google.protobuf.any_pb2', 'tensorflow.core.protobuf.saved_object_graph_pb2', 'tensorflow.core.protobuf.trackable_object_graph_pb2', 'tensorflow.core.protobuf.struct_pb2', 'tensorflow.core.framework.variable_pb2', 'tensorflow.core.protobuf.saver_pb2', 'tensorflow.core.protobuf.config_pb2', 'tensorflow.core.framework.cost_graph_pb2', 'tensorflow.core.framework.step_stats_pb2', 'tensorflow.core.framework.allocation_description_pb2', 'tensorflow.core.framework.tensor_description_pb2', 'tensorflow.core.protobuf.cluster_pb2', 'tensorflow.core.protobuf.debug_pb2', 'tensorflow.core.protobuf.rewriter_config_pb2', 'tensorflow.core.protobuf.verifier_config_pb2', 'tensorflow.core.protobuf.tensorflow_server_pb2', 'tensorflow.core.util', 'tensorflow.core.util.event_pb2', 'tensorflow.python.framework', 'tensorflow.python.framework.framework_lib', 'tensorflow.python.framework.device', 'tensorflow_core.python.tf2', 'tensorflow.python.framework.device_spec', 'tensorflow.python.util', 'tensorflow.python.util.tf_export', 'tensorflow.python.util.tf_decorator', 'tensorflow.python.util.tf_stack', 'tensorflow_core.python._tf_stack', 'tensorflow.python.util.tf_inspect', 'tensorflow.python.framework.ops', 'six.moves', 'tensorflow.python.eager', 'tensorflow.python.eager.context', 'absl', 'absl.logging', 'absl.flags', 'getopt', 'absl.flags._argument_parser', 'csv', '_csv', 'absl.flags._helpers', 'fcntl', 'absl.flags._defines', 'absl.flags._exceptions', 'absl.flags._flag', 'absl._collections_abc', 'absl.flags._flagvalues', 'xml.dom', 'xml.dom.domreg', 'xml.dom.minidom', 'xml.dom.minicompat', 'xml.dom.xmlbuilder', 'xml.dom.NodeFilter', 'absl.flags._validators', 'absl.logging.converter', 'tensorflow.python.eager.executor', 'tensorflow.python.eager.monitoring', 'tensorflow.python.framework.c_api_util', 'tensorflow.core.framework.api_def_pb2', 'tensorflow.python.util.compat', 'tensorflow.python.util.tf_contextlib', 'tensorflow.python.util.is_in_graph_mode', 'tensorflow.python.eager.core', 'tensorflow.python.framework.errors', 'tensorflow.python.framework.errors_impl', 'tensorflow.core.lib', 'tensorflow.core.lib.core', 'tensorflow.core.lib.core.error_codes_pb2', 'tensorflow.core.protobuf.error_codes_pb2', 'tensorflow.python.framework.error_interpolation', 'tensorflow.core.protobuf.graph_debug_info_pb2', 'tensorflow.python.util.deprecation', 'tensorflow.python.platform.tf_logging', 'tensorflow.python.util.decorator_utils', 'tensorflow.python.eager.tape', 'tensorflow.python.util.lazy_loader', 'tensorflow.python.framework.composite_tensor', 'tensorflow.python.util.nest', 'wrapt', 'wrapt.wrappers', 'wrapt._wrappers', 'wrapt.decorators', 'wrapt.importer', 'tensorflow.python.framework.dtypes', 'tensorflow.python.framework.indexed_slices', 'tensorflow.python.framework.tensor_conversion_registry', 'tensorflow.python.framework.tensor_like', 'tensorflow.python.framework.tensor_shape', 'tensorflow.python.framework.type_spec', 'tensorflow.python.framework.registry', 'tensorflow.python.framework.traceable_stack', 'tensorflow.python.framework.versions', 'tensorflow.python.ops', 'tensorflow.python.ops.control_flow_util', 'tensorflow.python.platform.app', 'absl.app', 'pdb', 'cmd', 'code', 'codeop', 'absl.command_name', 'faulthandler', 'tensorflow.python.platform.flags', 'tensorflow.python.util.function_utils', 'tensorflow.python.util.lock_util', 'tensorflow.python.util.memory', 'tensorflow.python.util.object_identity', 'tensorflow_core.tools', 'tensorflow.tools.docs', 'tensorflow.tools.docs.doc_controls', 'tensorflow.python.framework.sparse_tensor', 'tensorflow.python.framework.constant_op', 'tensorflow.python.eager.execute', 'google.protobuf.text_format', 'encodings.raw_unicode_escape', 'encodings.unicode_escape', 'google.protobuf.internal.decoder', 'google.protobuf.internal.encoder', 'google.protobuf.internal.wire_format', 'google.protobuf.internal.type_checkers', 'tensorflow.python.framework.tensor_util', 'tensorflow.python.framework.fast_tensor_util', 'tensorflow.python.framework.tensor_spec', 'tensorflow.python.framework.common_shapes', 'tensorflow.python.ops.gen_sparse_ops', 'tensorflow.python.framework.op_def_registry', 'tensorflow_core.python._op_def_registry', 'tensorflow.python.framework.op_def_library', 'tensorflow.python.framework.op_callbacks', 'tensorflow.python.util.dispatch', 'tensorflow.python.framework.random_seed', 'tensorflow.python.framework.importer', 'tensorflow.python.framework.function', 'tensorflow.python.framework.graph_to_function_def', 'tensorflow.python.ops.array_ops', 'tensorflow.python.compat', 'tensorflow.python.compat.compat', 'tensorflow.python.ops.gen_array_ops', 'tensorflow.python.ops.gen_math_ops', 'tensorflow.python.ops.resource_variable_ops', 'tensorflow.python.framework.cpp_shape_inference_pb2', 'tensorflow.python.ops.gen_logging_ops', 'tensorflow.python.ops.gen_resource_variable_ops', 'tensorflow.python.ops.gen_state_ops', 'tensorflow.python.ops.math_ops', 'tensorflow.python.framework.graph_util', 'tensorflow.python.framework.graph_util_impl', 'tensorflow.python.ops.gen_data_flow_ops', 'tensorflow.python.ops.gen_nn_ops', 'tensorflow.python.ops.state_ops', 'tensorflow.python.ops.variables', 'tensorflow.python.ops.control_flow_ops', 'tensorflow.core.protobuf.control_flow_pb2', 'tensorflow.python.ops.gen_control_flow_ops', 'tensorflow.python.ops.tensor_array_ops', 'tensorflow.python.ops.list_ops', 'tensorflow.python.ops.gen_list_ops', 'tensorflow.python.util.tf_should_use', 'tensorflow.python.training', 'tensorflow.python.training.tracking', 'tensorflow.python.training.tracking.base', 'tensorflow.python.ops.gen_io_ops', 'tensorflow.python.training.saving', 'tensorflow.python.training.saving.saveable_object', 'tensorflow.python.ops.variable_scope', 'tensorflow.python.client', 'tensorflow.python.client.session', 'tensorflow.python.ops.session_ops', 'tensorflow.python.training.experimental', 'tensorflow.python.training.experimental.mixed_precision_global_state', 'tensorflow.python.ops.init_ops', 'tensorflow.python.ops.gen_linalg_ops', 'tensorflow.python.ops.linalg_ops_impl', 'tensorflow.python.ops.random_ops', 'tensorflow.python.ops.gen_random_ops', 'tensorflow.python.framework.load_library', 'tensorflow.python.lib', 'tensorflow.python.lib.io', 'tensorflow.python.lib.io.file_io', 'tensorflow.python.framework.config', 'tensorflow.python.client.client_lib', 'tensorflow.python.ops.standard_ops', 'tensorflow_core.python.autograph', 'tensorflow.python.autograph', 'tensorflow.python.autograph.operators', 'tensorflow.python.autograph.operators.control_flow', 'tensorflow.python.autograph.operators.py_builtins', 'tensorflow.python.autograph.utils', 'tensorflow.python.autograph.utils.context_managers', 'tensorflow.python.autograph.utils.misc', 'tensorflow.python.autograph.utils.py_func', 'tensorflow.python.ops.script_ops', 'tensorflow_core.python._pywrap_py_func', 'tensorflow.python.eager.backprop', 'tensorflow.python.eager.backprop_util', 'tensorflow.python.eager.imperative_grad', 'tensorflow.python.ops.unconnected_gradients', 'tensorflow.python.ops.check_ops', 'tensorflow.python.ops.default_gradient', 'tensorflow.python.framework.func_graph', 'tensorflow.python.eager.graph_only_ops', 'tensorflow.python.framework.auto_control_deps', 'tensorflow.python.ops.custom_gradient', 'tensorflow.python.ops.op_selector', 'tensorflow.python.ops.gen_script_ops', 'tensorflow.python.autograph.utils.tensor_list', 'tensorflow.python.autograph.utils.testing', 'tensorflow.python.autograph.utils.type_check', 'tensorflow.python.autograph.utils.tensors', 'tensorflow.python.data', 'tensorflow.python.data.experimental', 'tensorflow.python.data.experimental.ops', 'tensorflow.python.data.experimental.ops.batching', 'tensorflow.python.data.ops', 'tensorflow.python.data.ops.dataset_ops', 'tensorflow.python.data.experimental.ops.distribute_options', 'tensorflow.python.data.util', 'tensorflow.python.data.util.options', 'tensorflow.python.data.experimental.ops.optimization_options', 'tensorflow.python.data.experimental.ops.stats_options', 'tensorflow.python.data.experimental.ops.stats_aggregator', 'tensorflow.python.ops.gen_experimental_dataset_ops', 'tensorflow.python.ops.summary_ops_v2', 'tensorflow.python.eager.profiler', 'tensorflow.python.platform.gfile', 'tensorflow.python.framework.smart_cond', 'tensorflow.python.ops.gen_summary_ops', 'tensorflow.python.ops.summary_op_util', 'tensorflow.python.training.training_util', 'tensorflow.python.framework.graph_io', 'tensorflow.python.data.experimental.ops.threading_options', 'tensorflow.python.data.ops.iterator_ops', 'tensorflow.python.data.ops.optional_ops', 'tensorflow.python.data.util.structure', 'tensorflow.python.data.util.nest', 'tensorflow.python.ops.ragged', 'tensorflow.python.ops.ragged.ragged_array_ops', 'tensorflow.python.ops.sort_ops', 'tensorflow.python.ops.nn_ops', 'tensorflow.python.ops.ragged.ragged_functional_ops', 'tensorflow.python.ops.ragged.ragged_config', 'tensorflow.python.ops.ragged.ragged_tensor', 'tensorflow.python.ops.gen_ragged_conversion_ops', 'tensorflow.python.ops.ragged.ragged_tensor_value', 'tensorflow.python.ops.ragged.ragged_util', 'tensorflow.python.ops.gen_ragged_math_ops', 'tensorflow.python.ops.ragged.segment_id_ops', 'tensorflow.python.ops.ragged.ragged_math_ops', 'tensorflow.python.ops.ragged.ragged_batch_gather_ops', 'tensorflow.python.ops.ragged.ragged_gather_ops', 'tensorflow.python.ops.gen_ragged_array_ops', 'tensorflow.python.ops.ragged.ragged_batch_gather_with_default_op', 'tensorflow.python.ops.ragged.ragged_dispatch', 'tensorflow.python.ops.clip_ops', 'tensorflow.python.ops.data_flow_ops', 'tensorflow.python.lib.io.python_io', 'tensorflow.python.lib.io.tf_record', 'tensorflow.python.ops.gen_bitwise_ops', 'tensorflow.python.ops.parsing_ops', 'tensorflow.python.ops.gen_parsing_ops', 'tensorflow.python.ops.parsing_config', 'tensorflow.python.ops.sparse_ops', 'tensorflow.python.ops.string_ops', 'tensorflow.python.ops.gen_string_ops', 'tensorflow.python.ops.ragged.ragged_concat_ops', 'tensorflow.python.ops.ragged.ragged_squeeze_op', 'tensorflow.python.ops.ragged.ragged_string_ops', 'tensorflow.python.ops.ragged.ragged_tensor_shape', 'tensorflow.python.ops.ragged.ragged_where_op', 'tensorflow.python.ops.ragged.ragged_operators', 'tensorflow.python.ops.ragged.ragged_getitem', 'tensorflow.python.ops.ragged.ragged_conversion_ops', 'tensorflow.python.ops.ragged.ragged_factory_ops', 'tensorflow.python.ops.ragged.ragged_map_ops', 'tensorflow.python.ops.gen_dataset_ops', 'tensorflow.python.training.saver', 'tensorflow.python.framework.meta_graph', 'tensorflow.python.ops.io_ops', 'tensorflow.python.training.checkpoint_management', 'tensorflow.python.training.checkpoint_state_pb2', 'tensorflow.python.training.py_checkpoint_reader', 'tensorflow.python._pywrap_checkpoint_reader', 'tensorflow.python.training.saving.saveable_object_util', 'tensorflow.python.data.util.random_seed', 'tensorflow.python.data.util.sparse', 'tensorflow.python.data.util.traverse', 'tensorflow.python.eager.function', 'tensorflow.python.eager.forwardprop_util', 'tensorflow.python.ops.functional_ops', 'tensorflow.python.ops.gen_functional_ops', 'tensorflow.python.ops.gradients_util', 'tensorflow.python.ops.control_flow_state', 'tensorflow.python.training.tracking.tracking', 'tensorflow.python.eager.def_function', 'tensorflow.python.eager.lift_to_graph', 'tensorflow.python.training.tracking.data_structures', 'tensorflow.python.saved_model', 'tensorflow.python.saved_model.revived_types', 'tensorflow.python.training.tracking.layer_utils', 'tensorflow.python.data.util.convert', 'tensorflow.python.data.experimental.ops.cardinality', 'tensorflow.python.data.experimental.ops.counter', 'tensorflow.python.data.experimental.ops.scan_ops', 'tensorflow.python.data.experimental.ops.enumerate_ops', 'tensorflow.python.data.experimental.ops.error_ops', 'tensorflow.python.data.experimental.ops.get_single_element', 'tensorflow.python.data.experimental.ops.grouping', 'tensorflow.python.data.experimental.ops.interleave_ops', 'tensorflow.python.data.experimental.ops.random_ops', 'tensorflow.python.data.ops.readers', 'tensorflow.python.ops.gen_stateless_random_ops', 'tensorflow.python.data.experimental.ops.iterator_ops', 'tensorflow.python.training.basic_session_run_hooks', 'tensorflow.python.client.timeline', 'tensorflow.python.training.session_run_hook', 'tensorflow.python.training.summary_io', 'tensorflow.python.summary', 'tensorflow.python.summary.summary_iterator', 'tensorflow.python.summary.writer', 'tensorflow.python.summary.writer.writer', 'tensorflow.python.summary.plugin_asset', 'tensorflow.python.summary.writer.event_file_writer', 'tensorflow.python.summary.writer.event_file_writer_v2', 'tensorflow.python.summary.writer.writer_cache', 'tensorflow.python.data.experimental.ops.parsing_ops', 'tensorflow.python.data.experimental.ops.prefetching_ops', 'tensorflow.python.data.experimental.ops.readers', 'gzip', 'tensorflow.python.data.experimental.ops.resampling', 'tensorflow.python.ops.logging_ops', 'tensorflow.python.data.experimental.ops.shuffle_ops', 'tensorflow.python.data.experimental.ops.stats_ops', 'tensorflow.python.data.experimental.ops.take_while_ops', 'tensorflow.python.data.experimental.ops.unique', 'tensorflow.python.data.experimental.ops.writers', 'tensorflow.python.util.all_util', 'tensorflow.python.autograph.operators.special_values', 'tensorflow.python.autograph.utils.ag_logging', 'tensorflow.python.autograph.operators.data_structures', 'tensorflow.python.autograph.operators.exceptions', 'tensorflow.python.autograph.operators.logical', 'tensorflow.python.autograph.operators.slices', 'tensorflow.python.autograph.core', 'tensorflow.python.autograph.core.converter', 'tensorflow.python.autograph.pyct', 'tensorflow.python.autograph.pyct.anno', 'gast', 'gast.gast', 'gast.ast3', 'gast.astn', 'tensorflow.python.autograph.pyct.ast_util', 'tensorflow.python.autograph.pyct.parser', 'tensorflow.python.autograph.pyct.inspect_utils', 'tensorflow.python.autograph.pyct.cfg', 'tensorflow.python.autograph.pyct.compiler', 'astor', 'astor.code_gen', 'astor.op_util', 'astor.node_util', 'astor.string_repr', 'astor.source_repr', 'astor.file_util', 'astor.tree_walk', 'tensorflow.python.autograph.pyct.origin_info', 'tensorflow.python.autograph.pyct.pretty_printer', 'termcolor', 'tensorflow.python.autograph.pyct.qual_names', 'tensorflow.python.autograph.pyct.templates', 'tensorflow.python.autograph.pyct.transformer', 'tensorflow.python.autograph.pyct.static_analysis', 'tensorflow.python.autograph.pyct.static_analysis.activity', 'tensorflow.python.autograph.pyct.static_analysis.annos', 'tensorflow.python.autograph.pyct.static_analysis.liveness', 'tensorflow.python.autograph.pyct.static_analysis.reaching_definitions', 'tensorflow.python.autograph.impl', 'tensorflow.python.autograph.impl.api', 'tensorflow.python.autograph.core.ag_ctx', 'tensorflow.python.autograph.impl.conversion', 'tensorflow.python.autograph.converters', 'tensorflow.python.autograph.converters.arg_defaults', 'tensorflow.python.autograph.converters.asserts', 'tensorflow.python.autograph.converters.break_statements', 'tensorflow.python.autograph.converters.call_trees', 'tensorflow.python.autograph.converters.conditional_expressions', 'tensorflow.python.autograph.converters.continue_statements', 'tensorflow.python.autograph.converters.control_flow', 'tensorflow.python.autograph.converters.directives', 'tensorflow.python.autograph.lang', 'tensorflow.python.autograph.lang.directives', 'tensorflow.python.autograph.converters.function_scopes', 'tensorflow.python.autograph.converters.lists', 'tensorflow.python.autograph.converters.logical_expressions', 'tensorflow.python.autograph.converters.return_statements', 'tensorflow.python.autograph.converters.slices', 'tensorflow.python.autograph.core.config', 'tensorflow.python.autograph.core.config_lib', 'tensorflow.python.autograph.core.function_wrappers', 'tensorflow.python.autograph.core.naming', 'tensorflow.python.autograph.core.unsupported_features_checker', 'tensorflow.python.autograph.lang.special_functions', 'tensorflow.python.autograph.pyct.errors', 'tensorflow.python.training.experimental.loss_scaling_gradient_tape', 'tensorflow.python.distribute', 'tensorflow.python.distribute.cluster_resolver', 'tensorflow.python.distribute.cluster_resolver.cluster_resolver', 'tensorflow.python.training.server_lib', 'tensorflow.python.distribute.cluster_resolver.gce_cluster_resolver', 'tensorflow.python.distribute.cluster_resolver.kubernetes_cluster_resolver', 'tensorflow.python.distribute.cluster_resolver.slurm_cluster_resolver', 'tensorflow.python.distribute.cluster_resolver.tfconfig_cluster_resolver', 'tensorflow.python.distribute.cluster_resolver.tpu_cluster_resolver', 'six.moves.urllib', 'six.moves.urllib.error', 'six.moves.urllib.request', 'tensorflow.python.distribute.cross_device_ops', 'tensorflow.python.client.device_lib', 'tensorflow.core.framework.device_attributes_pb2', 'tensorflow_core.python._pywrap_device_lib', 'tensorflow.python.distribute.cross_device_utils', 'tensorflow.python.distribute.all_reduce', 'tensorflow.python.ops.nccl_ops', 'tensorflow.python.ops.gen_nccl_ops', 'tensorflow.python.distribute.values', 'tensorflow.python.distribute.device_util', 'tensorflow.python.distribute.distribute_lib', 'tensorflow.python.distribute.distribution_strategy_context', 'tensorflow.python.distribute.numpy_dataset', 'tensorflow.python.distribute.reduce_util', 'tensorflow.python.ops.losses', 'tensorflow.python.ops.losses.loss_reduction', 'tensorflow.python.ops.losses.losses_impl', 'tensorflow.python.ops.confusion_matrix', 'tensorflow.python.ops.nn', 'tensorflow.python.ops.ctc_ops', 'tensorflow.python.ops.gen_ctc_ops', 'tensorflow.python.ops.inplace_ops', 'tensorflow.python.ops.linalg_ops', 'tensorflow.python.ops.map_fn', 'tensorflow.python.ops.nn_grad', 'tensorflow.python.ops.embedding_ops', 'tensorflow.python.ops.data_flow_grad', 'tensorflow.python.ops.nn_impl', 'tensorflow.python.ops.candidate_sampling_ops', 'tensorflow.python.ops.gen_candidate_sampling_ops', 'tensorflow.python.ops.losses.util', 'tensorflow.python.ops.weights_broadcast_ops', 'tensorflow.python.ops.sets', 'tensorflow.python.ops.sets_impl', 'tensorflow.python.ops.gen_set_ops', 'tensorflow.python.ops.collective_ops', 'tensorflow.python.ops.gen_collective_ops', 'tensorflow.python.framework.kernels', 'tensorflow.core.framework.kernel_def_pb2', 'tensorflow.python.distribute.mirrored_strategy', 'tensorflow.python.distribute.input_lib', 'tensorflow.python.data.experimental.ops.distribute', 'tensorflow.python.data.ops.multi_device_iterator_ops', 'tensorflow.python.distribute.input_ops', 'tensorflow.python.distribute.multi_worker_util', 'tensorflow.python.distribute.distribute_coordinator_context', 'tensorflow.python.distribute.shared_variable_creator', 'tensorflow.python.training.coordinator', 'tensorflow.python.distribute.one_device_strategy', 'tensorflow.python.distribute.experimental', 'tensorflow.python.distribute.central_storage_strategy', 'tensorflow.python.distribute.parameter_server_strategy', 'tensorflow.python.training.device_setter', 'tensorflow.python.distribute.collective_all_reduce_strategy', 'tensorflow.python.distribute.tpu_strategy', 'tensorflow.python.tpu', 'tensorflow.python.tpu.device_assignment', 'tensorflow.python.tpu.topology', 'tensorflow.core.protobuf.tpu', 'tensorflow.core.protobuf.tpu.topology_pb2', 'tensorflow.python.tpu.tpu', 'tensorflow.core.protobuf.tpu.dynamic_padding_pb2', 'tensorflow.python.compiler', 'tensorflow.python.compiler.xla', 'tensorflow.python.compiler.xla.jit', 'tensorflow.python.compiler.xla.xla', 'tensorflow_core.compiler', 'tensorflow.compiler.jit', 'tensorflow.compiler.jit.ops', 'tensorflow.compiler.jit.ops.xla_ops', 'tensorflow.compiler.jit.ops.xla_ops_grad', 'tensorflow.python.distribute.summary_op_util', 'tensorflow.python.tpu.tpu_function', 'tensorflow.python.tpu.ops', 'tensorflow.python.tpu.ops.tpu_ops', 'tensorflow.python.ops.gen_tpu_ops', 'tensorflow.python.tpu.tpu_strategy_util', 'tensorflow.python.tpu.tpu_system_metadata', 'tensorflow.python.tpu.training_loop', 'tensorflow.python.tpu.tensor_tracer', 'tensorflow.python.platform.analytics', 'tensorflow.python.tpu.tensor_tracer_flags', 'tensorflow.python.tpu.tensor_tracer_report', 'tensorflow.python.tpu.tensor_tracer_pb2', 'tensorflow.python.training.experimental.loss_scale', 'tensorflow.python.ops.array_grad', 'tensorflow.python.ops.cudnn_rnn_grad', 'tensorflow.python.ops.gen_cudnn_rnn_ops', 'tensorflow.python.ops.manip_grad', 'tensorflow.python.ops.manip_ops', 'tensorflow.python.ops.gen_manip_ops', 'tensorflow.python.ops.math_grad', 'tensorflow.python.ops.random_grad', 'tensorflow.python.ops.rnn_grad', 'tensorflow.python.ops.gen_rnn_ops', 'tensorflow.python.ops.sparse_grad', 'tensorflow.python.ops.state_grad', 'tensorflow.python.ops.tensor_array_grad', 'tensorflow.python.ops.special_math_ops', 'opt_einsum', 'opt_einsum.blas', 'opt_einsum.helpers', 'opt_einsum.parser', 'opt_einsum.paths', 'opt_einsum.path_random', 'opt_einsum.contract', 'opt_einsum.backends', 'opt_einsum.backends.cupy', 'opt_einsum.sharing', 'opt_einsum.backends.dispatch', 'opt_einsum.backends.object_arrays', 'opt_einsum.backends.jax', 'opt_einsum.backends.tensorflow', 'opt_einsum.backends.theano', 'opt_einsum.backends.torch', 'opt_einsum._version', 'tensorflow.compiler.tf2xla', 'tensorflow.compiler.tf2xla.ops', 'tensorflow.compiler.tf2xla.ops.gen_xla_ops', 'tensorflow.python.eager.wrap_function', 'tensorflow.python.saved_model.nested_structure_coder', 'tensorflow.python.ops.batch_ops', 'tensorflow.python.ops.gen_batch_ops', 'tensorflow.python.ops.critical_section_ops', 'tensorflow.python.ops.gradients', 'tensorflow.python.eager.forwardprop', 'tensorflow.python.ops.gradients_impl', 'tensorflow.python.ops.control_flow_grad', 'tensorflow.python.ops.image_grad', 'tensorflow.python.ops.gen_image_ops', 'tensorflow.python.ops.linalg_grad', 'tensorflow.python.ops.linalg', 'tensorflow.python.ops.linalg.linalg_impl', 'tensorflow.python.ops.linalg.linear_operator_util', 'tensorflow.python.module', 'tensorflow.python.module.module', 'tensorflow.python.ops.optional_grad', 'tensorflow.python.ops.histogram_ops', 'tensorflow.python.ops.lookup_ops', 'tensorflow.python.ops.gen_lookup_ops', 'tensorflow.python.ops.numerics', 'tensorflow.python.ops.partitioned_variables', 'tensorflow.python.ops.proto_ops', 'tensorflow.python.ops.gen_decode_proto_ops', 'tensorflow.python.ops.gen_encode_proto_ops', 'tensorflow.python.ops.stateless_random_ops', 'tensorflow.python.ops.template', 'tensorflow.python.training.tracking.util', 'tensorflow.python.training.saving.functional_saver', 'tensorflow.python.training.tracking.graph_view', 'tensorflow.python.training.optimizer', 'tensorflow.python.training.slot_creator', 'tensorflow.python.ops.parallel_for', 'tensorflow.python.ops.parallel_for.control_flow_ops', 'tensorflow.python.ops.parallel_for.pfor', 'tensorflow.compiler.tf2xla.python', 'tensorflow.compiler.tf2xla.python.xla', 'tensorflow.python.ops.bitwise_ops', 'tensorflow.python.ops.parallel_for.gradients', 'tensorflow.python.compiler.tensorrt', 'tensorflow.python.compiler.tensorrt.trt_convert', 'tensorflow.compiler.tf2tensorrt', 'tensorflow.compiler.tf2tensorrt.wrap_py_utils', '_wrap_py_utils', 'tensorflow.python.framework.convert_to_constants', 'tensorflow.python.grappler', 'tensorflow.python.grappler.tf_optimizer', 'tensorflow.python.grappler.cluster', 'tensorflow.core.grappler', 'tensorflow.core.grappler.costs', 'tensorflow.core.grappler.costs.op_performance_data_pb2', 'tensorflow.core.protobuf.device_properties_pb2', 'tensorflow.python.saved_model.builder', 'tensorflow.python.saved_model.builder_impl', 'tensorflow.core.protobuf.saved_model_pb2', 'tensorflow.python.saved_model.constants', 'tensorflow.python.saved_model.signature_def_utils', 'tensorflow.python.saved_model.signature_def_utils_impl', 'tensorflow.python.saved_model.signature_constants', 'tensorflow.python.saved_model.utils_impl', 'tensorflow.python.saved_model.load', 'tensorflow.python.saved_model.function_deserialization', 'tensorflow.python.framework.function_def_to_graph', 'tensorflow.python.saved_model.load_v1_in_v2', 'tensorflow.python.saved_model.loader_impl', 'tensorflow.python.saved_model.signature_serialization', 'tensorflow.python.training.monitored_session', 'tensorflow.python.ops.resources', 'tensorflow.python.summary.summary', 'google.protobuf.json_format', 'tensorflow.python.training.queue_runner', 'tensorflow.python.training.queue_runner_impl', 'tensorflow.core.protobuf.queue_runner_pb2', 'tensorflow.python.training.session_manager', 'tensorflow.python.saved_model.loader', 'tensorflow.python.saved_model.save', 'tensorflow.python.saved_model.function_serialization', 'tensorflow.python.saved_model.save_options', 'tensorflow.python.saved_model.tag_constants', 'tensorflow.python.ops.initializers_ns', 'tensorflow_core.python.keras', 'tensorflow.python.keras', 'tensorflow.python.keras.models', 'tensorflow.python.keras.backend', 'tensorflow.python.distribute.distribute_coordinator', 'tensorflow.python.keras.backend_config', 'tensorflow.python.ops.image_ops', 'tensorflow.python.ops.image_ops_impl', 'tensorflow.python.training.moving_averages', 'tensorflow.python.keras.metrics', 'tensorflow.python.keras.engine', 'tensorflow.python.keras.engine.base_layer', 'tensorflow.python.keras.constraints', 'tensorflow.python.keras.utils', 'tensorflow.python.keras.utils.generic_utils', 'tensorflow.python.keras.initializers', 'tensorflow.python.ops.init_ops_v2', 'tensorflow.python.keras.regularizers', 'tensorflow.python.keras.engine.base_layer_utils', 'tensorflow.python.ops.control_flow_v2_func_graphs', 'tensorflow.python.keras.engine.input_spec', 'tensorflow.python.keras.engine.node', 'tensorflow.python.keras.mixed_precision', 'tensorflow.python.keras.mixed_precision.experimental', 'tensorflow.python.keras.mixed_precision.experimental.autocast_variable', 'tensorflow.python.keras.mixed_precision.experimental.policy', 'tensorflow.python.keras.mixed_precision.experimental.loss_scale', 'tensorflow.python.keras.saving', 'tensorflow.python.keras.saving.saved_model', 'tensorflow.python.keras.saving.saved_model.layer_serialization', 'tensorflow.python.keras.saving.saved_model.base_serialization', 'tensorflow.python.util.serialization', 'tensorflow.python.keras.saving.saved_model.constants', 'tensorflow.python.keras.saving.saved_model.save_impl', 'tensorflow.python.keras.saving.saving_utils', 'tensorflow.python.keras.losses', 'tensorflow.python.keras.utils.losses_utils', 'tensorflow.python.keras.utils.tf_utils', 'tensorflow.python.keras.optimizers', 'tensorflow.python.keras.optimizer_v2', 'tensorflow.python.keras.optimizer_v2.adadelta', 'tensorflow.python.keras.optimizer_v2.optimizer_v2', 'tensorflow.python.keras.optimizer_v2.learning_rate_schedule', 'tensorflow.python.training.training_ops', 'tensorflow.python.training.gen_training_ops', 'tensorflow.python.keras.optimizer_v2.adagrad', 'tensorflow.python.keras.optimizer_v2.adam', 'tensorflow.python.keras.optimizer_v2.adamax', 'tensorflow.python.keras.optimizer_v2.ftrl', 'tensorflow.python.keras.optimizer_v2.gradient_descent', 'tensorflow.python.keras.optimizer_v2.nadam', 'tensorflow.python.keras.optimizer_v2.rmsprop', 'tensorflow.python.keras.utils.io_utils', 'h5py', 'h5py._errors', 'h5py._hl', 'h5py._hl.compat', 'h5py.version', 'h5py.h5', 'h5py.defs', 'h5py._objects', 'h5py._conv', 'h5py.h5r', 'h5py.h5t', 'h5py.utils', 'h5py.h5py_warnings', 'h5py.h5z', 'h5py.h5a', 'h5py.h5s', 'h5py.h5p', 'h5py.h5ac', 'h5py._proxy', 'h5py.h5d', 'h5py.h5ds', 'h5py.h5f', 'h5py.h5g', 'h5py.h5i', 'h5py.h5fd', 'h5py.h5pl', 'h5py._hl.filters', 'h5py._hl.base', 'h5py._hl.files', 'h5py._hl.group', 'h5py.h5o', 'h5py.h5l', 'h5py._hl.dataset', 'h5py._hl.selections', 'h5py._hl.selections2', 'h5py._hl.datatype', 'h5py._hl.vds', 'h5py._hl.attrs', 'tensorflow.python.keras.saving.saved_model.load', 'tensorflow.python.keras.saving.saved_model.utils', 'tensorflow.python.keras.saving.saved_model.serialized_attributes', 'tensorflow.python.keras.utils.metrics_utils', 'tensorflow.python.keras.engine.network', 'tensorflow.python.keras.engine.input_layer', 'tensorflow.python.keras.distribute', 'tensorflow.python.keras.distribute.distributed_training_utils', 'tensorflow.python.keras.callbacks', 'tensorflow.python.distribute.distributed_file_utils', 'tensorflow.python.keras.distribute.multi_worker_training_state', 'tensorflow.python.keras.utils.mode_keys', 'tensorflow.python.saved_model.model_utils', 'tensorflow.python.saved_model.model_utils.export_output', 'tensorflow.python.saved_model.model_utils.export_utils', 'tensorflow.python.saved_model.model_utils.mode_keys', 'tensorflow.python.keras.utils.data_utils', 'multiprocessing.dummy', 'multiprocessing.dummy.connection', 'tensorflow.python.keras.engine.training_utils', 'tensorflow.python.framework.composite_tensor_utils', 'tensorflow.python.keras.saving.hdf5_format', 'tensorflow.python.keras.saving.model_config', 'yaml', 'yaml.error', 'yaml.tokens', 'yaml.events', 'yaml.nodes', 'yaml.loader', 'yaml.reader', 'yaml.scanner', 'yaml.parser', 'yaml.composer', 'yaml.constructor', 'yaml.resolver', 'yaml.dumper', 'yaml.emitter', 'yaml.serializer', 'yaml.representer', 'yaml.cyaml', 'yaml._yaml', 'tensorflow.python.keras.utils.conv_utils', 'tensorflow.python.keras.saving.save', 'tensorflow.python.keras.saving.saved_model.save', 'tensorflow.python.keras.saving.saved_model.network_serialization', 'tensorflow.python.keras.utils.layer_utils', 'tensorflow.python.keras.engine.sequential', 'tensorflow.python.keras.layers', 'tensorflow.python.keras.engine.base_preprocessing_layer', 'tensorflow.python.keras.engine.training_generator', 'tensorflow.python.keras.layers.preprocessing', 'tensorflow.python.keras.layers.preprocessing.normalization_v1', 'tensorflow.python.keras.engine.base_preprocessing_layer_v1', 'tensorflow.python.keras.layers.preprocessing.normalization', 'tensorflow.python.keras.layers.preprocessing.text_vectorization_v1', 'tensorflow.python.keras.layers.preprocessing.text_vectorization', 'tensorflow.python.keras.layers.advanced_activations', 'tensorflow.python.keras.layers.convolutional', 'tensorflow.python.keras.activations', 'tensorflow.python.keras.layers.pooling', 'tensorflow.python.keras.layers.core', 'tensorflow.python.keras.layers.dense_attention', 'tensorflow.python.keras.layers.embeddings', 'tensorflow.python.keras.layers.local', 'tensorflow.python.keras.layers.merge', 'tensorflow.python.keras.layers.noise', 'tensorflow.python.keras.layers.normalization', 'tensorflow.python.keras.layers.normalization_v2', 'tensorflow.python.keras.layers.kernelized', 'tensorflow.python.keras.layers.recurrent', 'tensorflow.python.keras.layers.recurrent_v2', 'tensorflow.python.keras.layers.convolutional_recurrent', 'tensorflow.python.keras.layers.cudnn_recurrent', 'tensorflow.python.keras.layers.wrappers', 'tensorflow.python.keras.layers.rnn_cell_wrapper_v2', 'tensorflow.python.ops.rnn_cell_wrapper_impl', 'tensorflow.python.keras.layers.serialization', 'tensorflow.python.keras.engine.training', 'tensorflow.python.keras.engine.training_arrays', 'tensorflow.python.keras.engine.training_distributed', 'tensorflow.python.keras.engine.partial_batch_padding_handler', 'tensorflow.python.keras.engine.training_eager', 'tensorflow.python.keras.mixed_precision.experimental.loss_scale_optimizer', 'tensorflow.python.keras.engine.training_v2', 'tensorflow.python.keras.engine.data_adapter', 'pandas', 'pytz', 'pytz.exceptions', 'pytz.lazy', 'pytz.tzinfo', 'pytz.tzfile', 'dateutil', 'dateutil._version', 'pandas.compat', 'pandas.compat.chainmap', 'dateutil.parser', 'dateutil.parser._parser', 'dateutil.relativedelta', 'dateutil._common', 'dateutil.tz', 'dateutil.tz.tz', 'dateutil.tz._common', 'dateutil.tz._factories', 'dateutil.parser.isoparser', 'pandas.compat.numpy', 'pandas._libs', 'pandas._libs.tslib', 'pandas._libs.tslibs', 'pandas._libs.tslibs.conversion', 'pandas._libs.tslibs.np_datetime', '_cython_0_28_2', 'pandas._libs.tslibs.nattype', 'pandas._libs.tslibs.timedeltas', 'pandas._libs.tslibs.timezones', 'pandas._libs.tslibs.parsing', 'pandas._libs.tslibs.ccalendar', 'pandas._libs.tslibs.strptime', 'pandas._libs.tslibs.timestamps', 'pandas._libs.tslibs.fields', 'pandas._libs.hashtable', 'pandas._libs.missing', 'pandas._libs.lib', 'pandas.core', 'pandas.core.config_init', 'pandas.core.config', 'pandas.io', 'pandas.io.formats', 'pandas.io.formats.printing', 'pandas.core.dtypes', 'pandas.core.dtypes.inference', 'pandas.io.formats.console', 'pandas.io.formats.terminal', 'pandas.core.api', 'pandas.core.algorithms', 'pandas.core.dtypes.cast', 'pandas.core.dtypes.common', 'pandas._libs.algos', 'pandas.core.dtypes.dtypes', 'pandas.core.dtypes.generic', 'pandas.core.dtypes.base', 'pandas.errors', 'pandas.core.dtypes.missing', 'pandas.core.common', 'pandas.util', 'pandas.util._decorators', 'pandas._libs.properties', 'pandas.core.util', 'pandas.core.util.hashing', 'pandas._libs.hashing', 'pandas.core.arrays', 'pandas.core.arrays.base', 'pandas.compat.numpy.function', 'pandas.util._validators', 'pandas.core.arrays.categorical', 'pandas.core.accessor', 'pandas.core.base', 'pandas.core.nanops', 'pandas.core.missing', 'pandas.core.groupby', 'pandas.core.groupby.groupby', 'pandas.core.index', 'pandas.core.indexes', 'pandas.core.indexes.api', 'pandas.core.indexes.base', 'pandas._libs.index', 'pandas._libs.tslibs.period', 'pandas._libs.tslibs.frequencies', 'pandas._libs.tslibs.resolution', 'pandas.tseries', 'pandas.tseries.offsets', 'pandas.core.tools', 'pandas.core.tools.datetimes', 'dateutil.easter', 'pandas._libs.tslibs.offsets', 'pandas.tseries.frequencies', 'pandas._libs.join', 'pandas.core.ops', 'pandas._libs.ops', 'pandas.core.indexes.frozen', 'pandas.core.dtypes.concat', 'pandas.core.sorting', 'pandas.core.strings', 'pandas.core.indexes.category', 'pandas.core.indexes.multi', 'pandas.core.indexes.interval', 'pandas._libs.interval', 'pandas.core.indexes.datetimes', 'pandas.core.indexes.numeric', 'pandas.core.indexes.datetimelike', 'pandas.core.tools.timedeltas', 'pandas.core.indexes.timedeltas', 'pandas.core.indexes.range', 'pandas.core.indexes.period', 'pandas.core.frame', 'pandas.core.generic', 'pandas.core.indexing', 'pandas._libs.indexing', 'pandas.core.internals', 'pandas._libs.internals', 'pandas.core.sparse', 'pandas.core.sparse.array', 'pandas._libs.sparse', 'pandas.io.formats.format', 'pandas.io.common', 'pandas.core.series', 'pandas.core.indexes.accessors', 'pandas.plotting', 'pandas.plotting._misc', 'pandas.plotting._style', 'pandas.plotting._compat', 'pandas.plotting._tools', 'pandas.plotting._core', 'pandas.plotting._converter', 'matplotlib', 'matplotlib.cbook', 'matplotlib.cbook.deprecation', 'matplotlib.cbook._backports', 'matplotlib.compat', 'matplotlib.compat.subprocess', 'matplotlib.rcsetup', 'matplotlib.testing', 'matplotlib.fontconfig_pattern', 'pyparsing', 'matplotlib.colors', 'matplotlib._color_data', 'cycler', 'matplotlib._version'] INFO:root:正在从数据库读取原始数据 DEBUG:matplotlib:$HOME=/Users/tanghaojie DEBUG:matplotlib:matplotlib data path /Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/matplotlib/mpl-data DEBUG:matplotlib:loaded rc file /Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/matplotlib/mpl-data/matplotlibrc DEBUG:matplotlib:matplotlib version 2.2.2 DEBUG:matplotlib:interactive is False DEBUG:matplotlib:platform is darwin DEBUG:matplotlib:loaded modules: ['builtins', 'sys', '_frozen_importlib', '_imp', '_warnings', '_thread', '_weakref', '_frozen_importlib_external', '_io', 'marshal', 'posix', 'zipimport', 'encodings', 'codecs', '_codecs', 'encodings.aliases', 'encodings.utf_8', '_signal', '__main__', 'encodings.latin_1', 'io', 'abc', '_weakrefset', '_bootlocale', '_locale', 'encodings.ascii', 'site', 'os', 'errno', 'stat', '_stat', 'posixpath', 'genericpath', 'os.path', '_collections_abc', '_sitebuiltins', 'sysconfig', '_sysconfigdata_m_darwin_darwin', '_osx_support', 're', 'enum', 'types', 'functools', '_functools', 'collections', 'operator', '_operator', 'keyword', 'heapq', '_heapq', 'itertools', 'reprlib', '_collections', 'weakref', 'collections.abc', 'sre_compile', '_sre', 'sre_parse', 'sre_constants', 'copyreg', 'importlib', 'importlib._bootstrap', 'importlib._bootstrap_external', 'warnings', 'importlib.util', 'importlib.abc', 'importlib.machinery', 'contextlib', 'google', 'mpl_toolkits', 'zope', 'idlelib', 'idlelib.run', 'linecache', 'tokenize', 'token', 'queue', 'threading', 'time', 'traceback', 'tkinter', '_tkinter', 'tkinter.constants', 'idlelib.autocomplete', 'string', '_string', 'idlelib.autocomplete_w', 'platform', 'subprocess', 'signal', '_posixsubprocess', 'select', 'selectors', 'math', 'idlelib.multicall', 'idlelib.config', 'configparser', 'idlelib.hyperparser', 'idlelib.pyparse', 'idlelib.calltips', 'inspect', 'ast', '_ast', 'dis', 'opcode', '_opcode', 'textwrap', 'idlelib.calltip_w', 'idlelib.debugger_r', 'idlelib.debugger', 'bdb', 'fnmatch', 'idlelib.macosx', 'idlelib.scrolledlist', 'idlelib.windows', 'idlelib.debugobj_r', 'idlelib.rpc', 'pickle', 'struct', '_struct', '_compat_pickle', '_pickle', 'socket', '_socket', 'socketserver', 'idlelib.iomenu', 'shlex', 'tempfile', 'shutil', 'zlib', 'bz2', '_compression', '_bz2', 'lzma', '_lzma', 'pwd', 'grp', 'random', 'hashlib', '_hashlib', '_blake2', '_sha3', 'bisect', '_bisect', '_random', 'locale', 'idlelib.stackviewer', 'idlelib.debugobj', 'idlelib.tree', 'idlelib.zoomheight', 'pydoc', 'pkgutil', 'urllib', 'urllib.parse', 'copy', 'torch', 'torch._utils', 'torch._utils_internal', '__future__', 'torch.version', 'torch._six', 'numpy', 'numpy._globals', 'numpy.__config__', 'numpy.version', 'numpy._distributor_init', 'numpy.core', 'numpy.core.multiarray', 'numpy.core.overrides', 'datetime', '_datetime', 'numpy.core._multiarray_umath', 'numpy.compat', 'numpy.compat._inspect', 'numpy.compat.py3k', 'pathlib', 'ntpath', 'numpy.core.umath', 'numpy.core.numerictypes', 'numbers', 'numpy.core._string_helpers', 'numpy.core._type_aliases', 'numpy.core._dtype', 'numpy.core.numeric', 'numpy.core.shape_base', 'numpy.core._asarray', 'numpy.core.fromnumeric', 'numpy.core._methods', 'numpy.core._exceptions', 'numpy.core._ufunc_config', 'numpy.core.arrayprint', 'numpy.core.defchararray', 'numpy.core.records', 'numpy.core.memmap', 'numpy.core.function_base', 'numpy.core.machar', 'numpy.core.getlimits', 'numpy.core.einsumfunc', 'numpy.core._add_newdocs', 'numpy.core._multiarray_tests', 'numpy.core._dtype_ctypes', '_ctypes', 'ctypes', 'ctypes._endian', 'numpy.core._internal', 'numpy._pytesttester', 'numpy.lib', 'numpy.lib.mixins', 'numpy.lib.scimath', 'numpy.lib.type_check', 'numpy.lib.ufunclike', 'numpy.lib.index_tricks', 'numpy.matrixlib', 'numpy.matrixlib.defmatrix', 'numpy.linalg', 'numpy.linalg.linalg', 'numpy.lib.twodim_base', 'numpy.linalg.lapack_lite', 'numpy.linalg._umath_linalg', 'numpy.lib.function_base', 'numpy.lib.histograms', 'numpy.lib.stride_tricks', 'numpy.lib.nanfunctions', 'numpy.lib.shape_base', 'numpy.lib.polynomial', 'numpy.lib.utils', 'numpy.lib.arraysetops', 'numpy.lib.npyio', 'numpy.lib.format', 'numpy.lib._datasource', 'numpy.lib._iotools', 'numpy.lib.financial', 'decimal', '_decimal', 'numpy.lib.arrayterator', 'numpy.lib.arraypad', 'numpy.lib._version', 'numpy.fft', 'numpy.fft._pocketfft', 'numpy.fft._pocketfft_internal', 'numpy.fft.helper', 'numpy.polynomial', 'numpy.polynomial.polynomial', 'numpy.polynomial.polyutils', 'numpy.polynomial._polybase', 'numpy.polynomial.chebyshev', 'numpy.polynomial.legendre', 'numpy.polynomial.hermite', 'numpy.polynomial.hermite_e', 'numpy.polynomial.laguerre', 'numpy.random', 'numpy.random._pickle', 'numpy.random.mtrand', 'cython_runtime', 'numpy.random._bit_generator', '_cython_0_29_19', 'numpy.random._common', 'secrets', 'base64', 'binascii', 'hmac', 'numpy.random._bounded_integers', 'numpy.random._mt19937', 'numpy.random._philox', 'numpy.random._pcg64', 'numpy.random._sfc64', 'numpy.random._generator', 'numpy.ctypeslib', 'numpy.ma', 'numpy.ma.core', 'numpy.ma.extras', 'numpy.testing', 'unittest', 'unittest.result', 'unittest.util', 'unittest.case', 'difflib', 'logging', 'atexit', 'pprint', 'unittest.suite', 'unittest.loader', 'unittest.main', 'argparse', 'gettext', 'unittest.runner', 'unittest.signals', 'numpy.testing._private', 'numpy.testing._private.utils', 'gc', 'numpy.testing._private.decorators', 'numpy.testing._private.nosetester', 'torch._C._onnx', 'torch._C._jit_tree_views', 'torch._C._jit', 'torch._C', 'torch.random', 'torch.serialization', 'tarfile', 'zipfile', 'torch._tensor_str', 'torch.tensor', 'torch.utils', 'torch.utils.hooks', 'torch.storage', 'torch.cuda', 'multiprocessing', 'multiprocessing.context', 'multiprocessing.process', 'multiprocessing.reduction', 'array', '__mp_main__', 'multiprocessing.util', 'torch.cuda._utils', 'torch.cuda.random', 'torch.cuda.sparse', 'torch.cuda.profiler', 'torch.cuda.nvtx', 'glob', 'torch.cuda.streams', 'torch.sparse', 'torch.functional', 'torch.nn', 'torch.nn.modules', 'torch.nn.modules.module', 'torch.nn.backends', 'torch.nn.backends.thnn', 'torch.nn.backends.backend', 'torch.nn._functions', 'torch.nn._functions.thnn', 'torch.nn._functions.thnn.auto', 'torch._thnn', 'torch._thnn.utils', 'torch.autograd', 'torch.autograd.variable', 'torch.autograd.function', 'torch.autograd.gradcheck', 'torch.testing', 'torch.autograd.grad_mode', 'torch.autograd.anomaly_mode', 'torch.autograd.profiler', 'torch.nn._functions.thnn.auto_double_backwards', 'torch.nn._functions.thnn.auto_symbolic', 'torch.autograd._functions', 'torch.autograd._functions.tensor', 'torch.autograd._functions.utils', 'torch.nn._functions.thnn.normalization', 'torch.nn._functions.thnn.fold', 'torch.nn._functions.thnn.sparse', 'torch.nn.parameter', 'torch.nn.modules.linear', 'torch.nn.functional', 'torch.nn._reduction', 'torch._jit_internal', 'typing', 'typing.io', 'typing.re', 'torch.nn.modules.utils', 'torch.nn._functions.vision', 'torch.backends', 'torch.backends.cudnn', 'torch.nn.grad', 'torch.nn._VF', 'torch.nn.init', 'torch.nn.modules.conv', 'torch.nn.modules.activation', 'torch.nn.modules.loss', 'torch.nn.modules.container', 'torch.nn.modules.pooling', 'torch.nn.modules.batchnorm', 'torch.nn.modules.instancenorm', 'torch.nn.modules.normalization', 'torch.nn.modules.dropout', 'torch.nn.modules.padding', 'torch.nn.modules.sparse', 'torch.nn.modules.rnn', 'torch.nn.utils', 'torch.nn.utils.rnn', 'torch.nn.utils.clip_grad', 'torch.nn.utils.weight_norm', 'torch.nn.utils.convert_parameters', 'torch.nn.utils.spectral_norm', 'torch.nn.modules.pixelshuffle', 'torch.nn.modules.upsampling', 'torch.nn.modules.distance', 'torch.nn.modules.fold', 'torch.nn.modules.adaptive', 'torch.nn.parallel', 'torch.nn.parallel.parallel_apply', 'torch.nn.parallel.replicate', 'torch.cuda.comm', 'torch.cuda.nccl', 'torch.nn.parallel.data_parallel', 'torch.nn.parallel.scatter_gather', 'torch.nn.parallel._functions', 'torch.nn.parallel.distributed', 'torch.distributed', 'torch.nn.parallel.distributed_cpu', 'torch.nn.parallel.deprecated', 'torch.nn.parallel.deprecated.distributed', 'torch.distributed.deprecated', 'torch.nn.parallel.deprecated.distributed_cpu', 'torch.optim', 'torch.optim.adadelta', 'torch.optim.optimizer', 'torch.optim.adagrad', 'torch.optim.adam', 'torch.optim.sparse_adam', 'torch.optim.adamax', 'torch.optim.asgd', 'torch.optim.sgd', 'torch.optim.rprop', 'torch.optim.rmsprop', 'torch.optim.lbfgs', 'torch.optim.lr_scheduler', 'torch.multiprocessing', 'torch.multiprocessing.reductions', 'multiprocessing.resource_sharer', 'torch.multiprocessing.spawn', 'multiprocessing.connection', '_multiprocessing', 'torch.utils.backcompat', 'torch.onnx', 'torch.jit', 'torch.jit.frontend', 'torch.jit.annotations', 'torch.distributions', 'torch.distributions.bernoulli', 'torch.distributions.constraints', 'torch.distributions.exp_family', 'torch.distributions.distribution', 'torch.distributions.utils', 'torch.distributions.beta', 'torch.distributions.dirichlet', 'torch.distributions.binomial', 'torch.distributions.categorical', 'torch.distributions.cauchy', 'torch.distributions.chi2', 'torch.distributions.gamma', 'torch.distributions.constraint_registry', 'torch.distributions.transforms', 'torch.distributions.exponential', 'torch.distributions.fishersnedecor', 'torch.distributions.geometric', 'torch.distributions.gumbel', 'torch.distributions.uniform', 'torch.distributions.transformed_distribution', 'torch.distributions.half_cauchy', 'torch.distributions.half_normal', 'torch.distributions.normal', 'torch.distributions.independent', 'torch.distributions.kl', 'torch.distributions.laplace', 'torch.distributions.logistic_normal', 'torch.distributions.lowrank_multivariate_normal', 'torch.distributions.multivariate_normal', 'torch.distributions.one_hot_categorical', 'torch.distributions.pareto', 'torch.distributions.poisson', 'torch.distributions.log_normal', 'torch.distributions.multinomial', 'torch.distributions.negative_binomial', 'torch.distributions.relaxed_bernoulli', 'torch.distributions.relaxed_categorical', 'torch.distributions.studentT', 'torch.distributions.weibull', 'torch.backends.cuda', 'torch.backends.mkl', 'torch._torch_docs', 'torch._tensor_docs', 'torch._storage_docs', 'torch._ops', 'data_processor', 'torch.utils.data', 'torch.utils.data.sampler', 'torch.utils.data.distributed', 'torch.utils.data.dataset', 'torch.utils.data.dataloader', 'sklearn', 'sklearn._config', 'sklearn._distributor_init', 'sklearn.__check_build', 'sklearn.__check_build._check_build', 'sklearn.base', 'sklearn.utils', 'timeit', 'scipy', 'scipy._lib', 'scipy._lib._testutils', 'scipy._lib.deprecation', 'scipy._distributor_init', 'scipy.__config__', 'scipy.version', 'scipy._lib._version', 'scipy._lib.six', 'scipy._lib._ccallback', 'scipy._lib._ccallback_c', 'scipy.fft', 'scipy.fft._basic', 'scipy._lib.uarray', 'scipy._lib._uarray', 'scipy._lib._uarray._backend', 'scipy._lib._uarray._uarray', 'scipy.fft._realtransforms', 'scipy.fft._helper', 'scipy.fft._pocketfft', 'scipy.fft._pocketfft.basic', 'scipy.fft._pocketfft.pypocketfft', 'scipy.fft._pocketfft.helper', 'scipy.fft._pocketfft.realtransforms', 'scipy.fft._backend', 'numpy.dual', 'scipy.sparse', 'scipy.sparse.base', 'scipy._lib._numpy_compat', 'scipy.sparse.sputils', 'scipy.sparse.csr', 'scipy.sparse._sparsetools', 'scipy.sparse.compressed', 'scipy._lib._util', 'scipy.sparse.data', 'scipy.sparse.dia', 'scipy.sparse._index', 'scipy.sparse.csc', 'scipy.sparse.lil', 'scipy.sparse._csparsetools', 'scipy.sparse.dok', 'scipy.sparse.coo', 'scipy.sparse.bsr', 'scipy.sparse.construct', 'scipy.sparse.extract', 'scipy.sparse._matrix_io', 'scipy.sparse.csgraph', 'scipy.sparse.csgraph._laplacian', 'scipy.sparse.csgraph._shortest_path', '_cython_0_29_13', 'scipy.sparse.csgraph._validation', 'scipy.sparse.csgraph._tools', 'scipy.sparse.csgraph._traversal', 'scipy.sparse.csgraph._min_spanning_tree', 'scipy.sparse.csgraph._flow', 'scipy.sparse.csgraph._matching', 'scipy.sparse.csgraph._reordering', 'sklearn.utils.murmurhash', 'sklearn.utils.class_weight', 'sklearn.utils._joblib', 'joblib', 'joblib.memory', 'joblib.hashing', 'joblib._compat', 'joblib.func_inspect', 'joblib.logger', 'joblib.disk', 'joblib._memory_helpers', 'joblib._store_backends', 'json', 'json.decoder', 'json.scanner', '_json', 'json.encoder', 'joblib.backports', 'distutils', 'distutils.version', 'joblib.numpy_pickle', 'joblib.compressor', 'joblib.numpy_pickle_utils', 'joblib.numpy_pickle_compat', 'joblib.parallel', 'joblib._multiprocessing_helpers', 'joblib.format_stack', 'joblib.my_exceptions', 'joblib._parallel_backends', 'joblib.pool', 'joblib._memmapping_reducer', 'mmap', 'uuid', 'ctypes.util', 'ctypes.macholib', 'ctypes.macholib.dyld', 'ctypes.macholib.framework', 'ctypes.macholib.dylib', 'multiprocessing.pool', 'joblib.executor', 'joblib.externals', 'joblib.externals.loky', 'joblib.externals.loky._base', 'concurrent', 'concurrent.futures', 'concurrent.futures._base', 'concurrent.futures.process', 'concurrent.futures.thread', 'joblib.externals.loky.backend', 'joblib.externals.loky.backend.context', 'joblib.externals.loky.backend.process', 'joblib.externals.loky.backend.compat', 'joblib.externals.loky.backend.compat_posix', 'multiprocessing.synchronize', 'joblib.externals.loky.backend.reduction', 'joblib.externals.loky.backend._posix_reduction', 'joblib.externals.cloudpickle', 'joblib.externals.cloudpickle.cloudpickle', 'joblib.externals.loky.reusable_executor', 'joblib.externals.loky.process_executor', 'joblib.externals.loky.backend.queues', 'multiprocessing.queues', 'joblib.externals.loky.backend.utils', 'joblib.externals.loky.cloudpickle_wrapper', 'sklearn.exceptions', 'sklearn.utils.deprecation', 'sklearn.utils.fixes', 'scipy.stats', 'scipy.stats.stats', 'scipy.spatial', 'scipy.spatial.kdtree', 'scipy.spatial.ckdtree', 'scipy.spatial.qhull', 'scipy._lib.messagestream', 'scipy.spatial._spherical_voronoi', 'scipy.spatial._voronoi', 'scipy.spatial._plotutils', 'scipy._lib.decorator', 'scipy.spatial._procrustes', 'scipy.linalg', 'scipy.linalg.linalg_version', 'scipy.linalg.misc', 'scipy.linalg.blas', 'scipy.linalg._fblas', 'scipy.linalg.lapack', 'scipy.linalg._flapack', 'scipy.linalg.basic', 'scipy.linalg.flinalg', 'scipy.linalg._flinalg', 'scipy.linalg.decomp', 'scipy.linalg.decomp_svd', 'scipy.linalg._solve_toeplitz', 'scipy.linalg.decomp_lu', 'scipy.linalg._decomp_ldl', 'scipy.linalg.decomp_cholesky', 'scipy.linalg.decomp_qr', 'scipy.linalg._decomp_qz', 'scipy.linalg.decomp_schur', 'scipy.linalg._decomp_polar', 'scipy.linalg.matfuncs', 'scipy.linalg.special_matrices', 'scipy.linalg._expm_frechet', 'scipy.linalg._matfuncs_sqrtm', 'scipy.linalg._solvers', 'scipy.linalg._procrustes', 'scipy.linalg._decomp_update', 'scipy.linalg.cython_blas', 'scipy.linalg.cython_lapack', 'scipy.linalg._sketches', 'scipy.spatial.distance', 'scipy.spatial._distance_wrap', 'scipy.spatial._hausdorff', 'scipy.special', 'scipy.special.sf_error', 'scipy.special._ufuncs', 'scipy.special._ufuncs_cxx', 'scipy.special._basic', 'scipy.special.specfun', 'scipy.special.orthogonal', 'scipy.special._comb', 'scipy.special._logsumexp', 'scipy.special.spfun_stats', 'scipy.special._ellip_harm', 'scipy.special._ellip_harm_2', 'scipy.special.lambertw', 'scipy.special._spherical_bessel', 'scipy.spatial.transform', 'scipy.spatial.transform.rotation', 'scipy.spatial.transform._rotation_groups', 'scipy.constants', 'scipy.constants.codata', 'scipy.constants.constants', 'scipy.spatial.transform._rotation_spline', 'scipy.ndimage', 'scipy.ndimage.filters', 'scipy.ndimage._ni_support', 'scipy.ndimage._nd_image', 'scipy.ndimage._ni_docstrings', 'scipy._lib.doccer', 'scipy.ndimage.fourier', 'scipy.ndimage.interpolation', 'scipy.ndimage.measurements', 'scipy.ndimage._ni_label', '_ni_label', 'scipy.ndimage.morphology', 'scipy.stats.distributions', 'scipy.stats._distn_infrastructure', 'scipy.stats._distr_params', 'scipy.optimize', 'scipy.optimize.optimize', 'scipy.optimize.linesearch', 'scipy.optimize.minpack2', 'scipy.optimize._minimize', 'scipy.optimize._trustregion_dogleg', 'scipy.optimize._trustregion', 'scipy.optimize._trustregion_ncg', 'scipy.optimize._trustregion_krylov', 'scipy.optimize._trlib', 'scipy.optimize._trlib._trlib', 'scipy.optimize._trustregion_exact', 'scipy.optimize._trustregion_constr', 'scipy.optimize._trustregion_constr.minimize_trustregion_constr', 'scipy.sparse.linalg', 'scipy.sparse.linalg.isolve', 'scipy.sparse.linalg.isolve.iterative', 'scipy.sparse.linalg.isolve._iterative', 'scipy.sparse.linalg.interface', 'scipy.sparse.linalg.isolve.utils', 'scipy._lib._threadsafety', 'scipy.sparse.linalg.isolve.minres', 'scipy.sparse.linalg.isolve.lgmres', 'scipy.sparse.linalg.isolve._gcrotmk', 'scipy.sparse.linalg.isolve.lsqr', 'scipy.sparse.linalg.isolve.lsmr', 'scipy.sparse.linalg.dsolve', 'scipy.sparse.linalg.dsolve.linsolve', 'scipy.sparse.linalg.dsolve._superlu', 'scipy.sparse.linalg.dsolve._add_newdocs', 'scipy.sparse.linalg.eigen', 'scipy.sparse.linalg.eigen.arpack', 'scipy.sparse.linalg.eigen.arpack.arpack', 'scipy.sparse.linalg.eigen.arpack._arpack', 'scipy.sparse.linalg.eigen.lobpcg', 'scipy.sparse.linalg.eigen.lobpcg.lobpcg', 'scipy.sparse.linalg.matfuncs', 'scipy.sparse.linalg._expm_multiply', 'scipy.sparse.linalg._onenormest', 'scipy.sparse.linalg._norm', 'scipy.optimize._differentiable_functions', 'scipy.optimize._numdiff', 'scipy.optimize._group_columns', 'scipy.optimize._hessian_update_strategy', 'scipy.optimize._constraints', 'scipy.optimize._trustregion_constr.equality_constrained_sqp', 'scipy.optimize._trustregion_constr.projections', 'scipy.optimize._trustregion_constr.qp_subproblem', 'scipy.optimize._trustregion_constr.canonical_constraint', 'scipy.optimize._trustregion_constr.tr_interior_point', 'scipy.optimize._trustregion_constr.report', 'scipy.optimize.lbfgsb', 'scipy.optimize._lbfgsb', 'scipy.optimize.tnc', 'scipy.optimize.moduleTNC', 'scipy.optimize.cobyla', 'scipy.optimize._cobyla', 'scipy.optimize.slsqp', 'scipy.optimize._slsqp', 'scipy.optimize._root', 'scipy.optimize.minpack', 'scipy.optimize._minpack', 'scipy.optimize._lsq', 'scipy.optimize._lsq.least_squares', 'scipy.optimize._lsq.trf', 'scipy.optimize._lsq.common', 'scipy.optimize._lsq.dogbox', 'scipy.optimize._lsq.lsq_linear', 'scipy.optimize._lsq.trf_linear', 'scipy.optimize._lsq.givens_elimination', 'scipy.optimize._lsq.bvls', 'scipy.optimize._spectral', 'scipy.optimize.nonlin', 'scipy.optimize._root_scalar', 'scipy.optimize.zeros', 'scipy.optimize._zeros', 'scipy.optimize.nnls', 'scipy.optimize._nnls', 'scipy.optimize._basinhopping', 'scipy.optimize._linprog', 'scipy.optimize._linprog_ip', 'scipy.optimize._linprog_util', 'scipy.optimize._remove_redundancy', 'scipy.optimize._linprog_simplex', 'scipy.optimize._linprog_rs', 'scipy.optimize._bglu_dense', 'scipy.optimize._lsap', 'scipy.optimize._lsap_module', 'scipy.optimize._differentialevolution', 'scipy.optimize._shgo', 'scipy.optimize._shgo_lib', 'scipy.optimize._shgo_lib.sobol_seq', 'scipy.optimize._shgo_lib.triangulation', 'scipy.optimize._dual_annealing', 'scipy.integrate', 'scipy.integrate.quadrature', 'scipy.integrate.odepack', 'scipy.integrate._odepack', 'scipy.integrate.quadpack', 'scipy.integrate._quadpack', 'scipy.integrate._ode', 'scipy.integrate.vode', 'scipy.integrate._dop', 'scipy.integrate.lsoda', 'scipy.integrate._bvp', 'scipy.integrate._ivp', 'scipy.integrate._ivp.ivp', 'scipy.integrate._ivp.bdf', 'scipy.integrate._ivp.common', 'scipy.integrate._ivp.base', 'scipy.integrate._ivp.radau', 'scipy.integrate._ivp.rk', 'scipy.integrate._ivp.dop853_coefficients', 'scipy.integrate._ivp.lsoda', 'scipy.integrate._quad_vec', 'scipy.misc', 'scipy.misc.doccer', 'scipy.misc.common', 'scipy.stats._constants', 'scipy.stats._continuous_distns', 'scipy.interpolate', 'scipy.interpolate.interpolate', 'scipy.interpolate.fitpack', 'scipy.interpolate._fitpack_impl', 'scipy.interpolate._fitpack', 'scipy.interpolate.dfitpack', 'scipy.interpolate._bsplines', 'scipy.interpolate._bspl', 'scipy.interpolate.polyint', 'scipy.interpolate._ppoly', 'scipy.interpolate.fitpack2', 'scipy.interpolate.interpnd', 'scipy.interpolate.rbf', 'scipy.interpolate._cubic', 'scipy.interpolate.ndgriddata', 'scipy.interpolate._pade', 'scipy.stats._stats', 'scipy.stats._tukeylambda_stats', 'scipy.stats._discrete_distns', 'scipy.stats.mstats_basic', 'scipy.stats._stats_mstats_common', 'scipy.stats._rvs_sampling', 'scipy.stats._hypotests', 'scipy.stats.morestats', 'scipy.stats.statlib', 'scipy.stats.contingency', 'scipy.stats._binned_statistic', 'scipy.stats.kde', 'scipy.stats.mvn', 'scipy.stats.mstats', 'scipy.stats.mstats_extras', 'scipy.stats._multivariate', 'sklearn.externals', 'sklearn.externals._scipy_linalg', 'sklearn.utils.validation', 'sklearn.utils._show_versions', 'sklearn.utils._openmp_helpers', 'sklearn.model_selection', 'sklearn.model_selection._split', 'sklearn.utils.multiclass', 'sklearn.model_selection._validation', 'sklearn.utils.metaestimators', 'sklearn.metrics', 'sklearn.metrics._ranking', 'sklearn.utils.extmath', 'sklearn.utils._logistic_sigmoid', 'sklearn.utils.sparsefuncs_fast', '_cython_0_29_14', 'sklearn.utils.sparsefuncs', 'sklearn.preprocessing', 'sklearn.preprocessing._function_transformer', 'sklearn.preprocessing._data', 'sklearn.preprocessing._csr_polynomial_expansion', 'sklearn.preprocessing._encoders', 'sklearn.preprocessing._label', 'sklearn.preprocessing._discretization', 'sklearn.metrics._base', 'sklearn.metrics._classification', 'sklearn.metrics.cluster', 'sklearn.metrics.cluster._supervised', 'sklearn.metrics.cluster._expected_mutual_info_fast', 'sklearn.metrics.cluster._unsupervised', 'sklearn.metrics.pairwise', 'sklearn.utils._mask', 'sklearn.metrics._pairwise_fast', 'sklearn.metrics.cluster._bicluster', 'sklearn.metrics._regression', 'sklearn.metrics._scorer', 'sklearn.metrics._plot', 'sklearn.metrics._plot.roc_curve', 'sklearn.metrics._plot.base', 'sklearn.metrics._plot.precision_recall_curve', 'sklearn.metrics._plot.confusion_matrix', 'sklearn.model_selection._search', 'sklearn.utils.random', 'sklearn.utils._random', 'pymysql', 'pymysql._compat', 'pymysql.constants', 'pymysql.constants.FIELD_TYPE', 'pymysql.converters', 'pymysql.constants.FLAG', 'pymysql.charset', 'pymysql.err', 'pymysql.constants.ER', 'pymysql.times', 'pymysql.connections', 'pymysql._auth', 'pymysql.constants.CLIENT', 'cryptography', 'cryptography.__about__', 'cryptography.hazmat', 'cryptography.hazmat.backends', 'cryptography.hazmat.primitives', 'cryptography.hazmat.primitives.serialization', 'cryptography.hazmat.primitives._serialization', 'cryptography.hazmat.primitives.serialization.base', 'cryptography.hazmat._types', 'cryptography.hazmat.primitives.asymmetric', 'cryptography.hazmat.primitives.asymmetric.dsa', 'cryptography.utils', 'cryptography.hazmat.primitives.hashes', 'cryptography.exceptions', 'cryptography.hazmat.backends.interfaces', 'cryptography.hazmat.primitives.asymmetric.utils', 'cryptography.hazmat._der', 'cryptography.hazmat.primitives.asymmetric.ec', 'cryptography.hazmat._oid', 'cryptography.hazmat.primitives.asymmetric.ed25519', 'cryptography.hazmat.primitives.asymmetric.ed448', 'cryptography.hazmat.primitives.asymmetric.rsa', 'cryptography.hazmat.primitives._asymmetric', 'cryptography.hazmat.primitives.asymmetric.dh', 'cryptography.hazmat.primitives.serialization.ssh', 'cryptography.hazmat.primitives.ciphers', 'cryptography.hazmat.primitives.ciphers.base', 'cryptography.hazmat.primitives._cipheralgorithm', 'cryptography.hazmat.primitives.ciphers.modes', 'cryptography.hazmat.primitives.ciphers.algorithms', 'cryptography.hazmat.primitives.asymmetric.padding', 'pymysql.constants.COMMAND', 'pymysql.constants.CR', 'pymysql.constants.SERVER_STATUS', 'pymysql.cursors', 'pymysql.optionfile', 'pymysql.protocol', 'pymysql.util', 'ssl', 'ipaddress', '_ssl', 'getpass', 'termios', 'classifyer', 'xlrd', 'xlrd.info', 'xlrd.timemachine', 'xlrd.biffh', 'xlrd.formula', 'xlrd.book', 'xlrd.sheet', 'xlrd.formatting', 'xlrd.compdoc', 'xlrd.xldate', 'xlrd.xlsx', 'character_processor', 'pyltp', 'bilstm_attention', 'nlpcda', 'nlpcda.tools', 'nlpcda.tools.Homophone', 'nlpcda.tools.Basetool', 'nlpcda.config', 'jieba', 'jieba.finalseg', 'jieba._compat', 'pkg_resources', 'plistlib', 'xml', 'xml.parsers', 'xml.parsers.expat', 'pyexpat.errors', 'pyexpat.model', 'pyexpat', 'xml.parsers.expat.model', 'xml.parsers.expat.errors', 'email', 'email.parser', 'email.feedparser', 'email.errors', 'email._policybase', 'email.header', 'email.quoprimime', 'email.base64mime', 'email.charset', 'email.encoders', 'quopri', 'email.utils', 'email._parseaddr', 'calendar', 'pkg_resources.extern', 'pkg_resources._vendor', 'pkg_resources._vendor.appdirs', 'pkg_resources.extern.appdirs', 'pkg_resources._vendor.packaging', 'pkg_resources._vendor.packaging.__about__', 'pkg_resources.extern.packaging', 'pkg_resources.extern.packaging.version', 'pkg_resources.extern.packaging._structures', 'pkg_resources.extern.packaging._typing', 'pkg_resources.extern.packaging.specifiers', 'pkg_resources.extern.packaging._compat', 'pkg_resources.extern.packaging.utils', 'pkg_resources.extern.packaging.requirements', 'pkg_resources._vendor.pyparsing', 'pkg_resources.extern.pyparsing', 'pkg_resources.extern.packaging.markers', 'jieba.finalseg.prob_start', 'jieba.finalseg.prob_trans', 'jieba.finalseg.prob_emit', 'nlpcda.tools.Ner', 'nlpcda.tools.Random_delete_char', 'nlpcda.tools.Random_word', 'nlpcda.tools.Similar_word', 'nlpcda.tools.Char_position_exchange', 'nlpcda.tools.Translate', 'requests', 'urllib3', 'urllib3.connectionpool', 'urllib3.exceptions', 'urllib3.packages', 'urllib3.packages.ssl_match_hostname', 'urllib3.packages.six', 'urllib3.packages.six.moves', 'http', 'http.client', 'email.message', 'uu', 'email._encoded_words', 'email.iterators', 'urllib3.packages.six.moves.http_client', 'urllib3.connection', 'urllib3.util', 'urllib3.util.connection', 'urllib3.util.wait', 'urllib3.contrib', 'urllib3.contrib._appengine_environ', 'urllib3.util.request', 'urllib3.util.response', 'urllib3.util.ssl_', 'urllib3.util.url', 'urllib3.util.timeout', 'urllib3.util.retry', 'urllib3._collections', 'urllib3.request', 'urllib3.filepost', 'urllib3.fields', 'mimetypes', 'urllib3.packages.six.moves.urllib', 'urllib3.packages.six.moves.urllib.parse', 'urllib3.response', 'urllib3.util.queue', 'urllib3.poolmanager', 'chardet', 'chardet.compat', 'chardet.universaldetector', 'chardet.charsetgroupprober', 'chardet.enums', 'chardet.charsetprober', 'chardet.escprober', 'chardet.codingstatemachine', 'chardet.escsm', 'chardet.latin1prober', 'chardet.mbcsgroupprober', 'chardet.utf8prober', 'chardet.mbcssm', 'chardet.sjisprober', 'chardet.mbcharsetprober', 'chardet.chardistribution', 'chardet.euctwfreq', 'chardet.euckrfreq', 'chardet.gb2312freq', 'chardet.big5freq', 'chardet.jisfreq', 'chardet.jpcntx', 'chardet.eucjpprober', 'chardet.gb2312prober', 'chardet.euckrprober', 'chardet.cp949prober', 'chardet.big5prober', 'chardet.euctwprober', 'chardet.sbcsgroupprober', 'chardet.sbcharsetprober', 'chardet.langcyrillicmodel', 'chardet.langgreekmodel', 'chardet.langbulgarianmodel', 'chardet.langthaimodel', 'chardet.langhebrewmodel', 'chardet.hebrewprober', 'chardet.langturkishmodel', 'chardet.version', 'requests.exceptions', 'urllib3.contrib.pyopenssl', 'OpenSSL', 'OpenSSL.crypto', 'six', 'cryptography.x509', 'cryptography.x509.certificate_transparency', 'cryptography.x509.base', 'cryptography.x509.extensions', 'cryptography.hazmat.primitives.constant_time', 'cryptography.x509.general_name', 'cryptography.x509.name', 'cryptography.x509.oid', 'OpenSSL._util', 'cryptography.hazmat.bindings', 'cryptography.hazmat.bindings.openssl', 'cryptography.hazmat.bindings.openssl.binding', '_cffi_backend', '_openssl.lib', '_openssl', 'cryptography.hazmat.bindings._openssl', 'cryptography.hazmat.bindings.openssl._conditional', 'OpenSSL.SSL', 'OpenSSL.version', 'cryptography.hazmat.backends.openssl', 'cryptography.hazmat.backends.openssl.backend', 'cryptography.hazmat.backends.openssl.aead', 'cryptography.hazmat.backends.openssl.ciphers', 'cryptography.hazmat.backends.openssl.cmac', 'cryptography.hazmat.backends.openssl.decode_asn1', 'cryptography.hazmat.backends.openssl.dh', 'cryptography.hazmat.backends.openssl.dsa', 'cryptography.hazmat.backends.openssl.utils', 'cryptography.hazmat.backends.openssl.ec', 'cryptography.hazmat.backends.openssl.ed25519', 'cryptography.hazmat.backends.openssl.ed448', 'cryptography.hazmat.backends.openssl.encode_asn1', 'cryptography.hazmat.backends.openssl.hashes', 'cryptography.hazmat.backends.openssl.hmac', 'cryptography.hazmat.backends.openssl.ocsp', 'cryptography.hazmat.backends.openssl.x509', 'cryptography.hazmat.backends.openssl.rsa', 'cryptography.x509.ocsp', 'cryptography.hazmat.backends.openssl.poly1305', 'cryptography.hazmat.backends.openssl.x25519', 'cryptography.hazmat.primitives.asymmetric.x25519', 'cryptography.hazmat.backends.openssl.x448', 'cryptography.hazmat.primitives.asymmetric.x448', 'cryptography.hazmat.primitives.kdf', 'cryptography.hazmat.primitives.kdf.scrypt', 'cryptography.hazmat.primitives.serialization.pkcs7', 'urllib3.packages.backports', 'urllib3.packages.backports.makefile', 'requests.__version__', 'requests.utils', 'requests.certs', 'certifi', 'certifi.core', 'requests._internal_utils', 'requests.compat', 'urllib.request', 'urllib.error', 'urllib.response', '_scproxy', 'http.cookiejar', 'http.cookies', 'requests.cookies', 'requests.structures', 'requests.packages', 'requests.packages.urllib3', 'requests.packages.urllib3.connectionpool', 'requests.packages.urllib3.exceptions', 'requests.packages.urllib3.packages', 'requests.packages.urllib3.packages.ssl_match_hostname', 'requests.packages.urllib3.packages.six', 'requests.packages.urllib3.packages.six.moves', 'requests.packages.urllib3.packages.six.moves.http_client', 'requests.packages.urllib3.connection', 'requests.packages.urllib3.util', 'requests.packages.urllib3.util.connection', 'requests.packages.urllib3.util.wait', 'requests.packages.urllib3.contrib', 'requests.packages.urllib3.contrib._appengine_environ', 'requests.packages.urllib3.util.request', 'requests.packages.urllib3.util.response', 'requests.packages.urllib3.util.ssl_', 'requests.packages.urllib3.util.url', 'requests.packages.urllib3.util.timeout', 'requests.packages.urllib3.util.retry', 'requests.packages.urllib3._collections', 'requests.packages.urllib3.request', 'requests.packages.urllib3.filepost', 'requests.packages.urllib3.fields', 'requests.packages.urllib3.packages.six.moves.urllib', 'requests.packages.urllib3.packages.six.moves.urllib.parse', 'requests.packages.urllib3.response', 'requests.packages.urllib3.util.queue', 'requests.packages.urllib3.poolmanager', 'requests.packages.urllib3.contrib.pyopenssl', 'requests.packages.urllib3.packages.backports', 'requests.packages.urllib3.packages.backports.makefile', 'idna', 'idna.package_data', 'idna.core', 'idna.idnadata', 'unicodedata', 'idna.intranges', 'requests.packages.idna', 'requests.packages.idna.package_data', 'requests.packages.idna.core', 'requests.packages.idna.idnadata', 'requests.packages.idna.intranges', 'requests.packages.chardet', 'requests.packages.chardet.compat', 'requests.packages.chardet.universaldetector', 'requests.packages.chardet.charsetgroupprober', 'requests.packages.chardet.enums', 'requests.packages.chardet.charsetprober', 'requests.packages.chardet.escprober', 'requests.packages.chardet.codingstatemachine', 'requests.packages.chardet.escsm', 'requests.packages.chardet.latin1prober', 'requests.packages.chardet.mbcsgroupprober', 'requests.packages.chardet.utf8prober', 'requests.packages.chardet.mbcssm', 'requests.packages.chardet.sjisprober', 'requests.packages.chardet.mbcharsetprober', 'requests.packages.chardet.chardistribution', 'requests.packages.chardet.euctwfreq', 'requests.packages.chardet.euckrfreq', 'requests.packages.chardet.gb2312freq', 'requests.packages.chardet.big5freq', 'requests.packages.chardet.jisfreq', 'requests.packages.chardet.jpcntx', 'requests.packages.chardet.eucjpprober', 'requests.packages.chardet.gb2312prober', 'requests.packages.chardet.euckrprober', 'requests.packages.chardet.cp949prober', 'requests.packages.chardet.big5prober', 'requests.packages.chardet.euctwprober', 'requests.packages.chardet.sbcsgroupprober', 'requests.packages.chardet.sbcharsetprober', 'requests.packages.chardet.langcyrillicmodel', 'requests.packages.chardet.langgreekmodel', 'requests.packages.chardet.langbulgarianmodel', 'requests.packages.chardet.langthaimodel', 'requests.packages.chardet.langhebrewmodel', 'requests.packages.chardet.hebrewprober', 'requests.packages.chardet.langturkishmodel', 'requests.packages.chardet.version', 'requests.models', 'encodings.idna', 'stringprep', 'requests.hooks', 'requests.auth', 'requests.status_codes', 'requests.api', 'requests.sessions', 'requests.adapters', 'nlpcda.tools.Equivalent_char', 'nlpcda.tools.Simbert', 'nlpcda.tools.simbert', 'nlpcda.tools.simbert.generator', 'bert4keras', 'bert4keras.backend', 'distutils.util', 'distutils.errors', 'distutils.dep_util', 'distutils.spawn', 'distutils.debug', 'distutils.log', 'distutils.sysconfig', 'tensorflow', 'tensorflow._api', 'tensorflow.python', 'tensorflow.tools', 'tensorflow.core', 'tensorflow.compiler', 'tensorflow.lite', 'tensorflow.keras', 'tensorflow.compat', 'tensorflow.summary', 'tensorflow.examples', 'tensorflow.estimator', 'tensorflow_core', 'tensorflow_core.python', 'tensorflow_core.python.pywrap_tensorflow', 'tensorflow.python.platform', 'tensorflow.python.platform.self_check', 'tensorflow.python.platform.build_info', 'tensorflow.python.pywrap_tensorflow_internal', 'imp', 'swig_runtime_data4', '_pywrap_tensorflow_internal', 'tensorflow_core.python._pywrap_utils', 'tensorflow_core.python._pywrap_tfprof', 'tensorflow_core.python._pywrap_events_writer', 'tensorflow_core.python._pywrap_util_port', 'tensorflow_core.python._pywrap_stat_summarizer', 'tensorflow_core.python._pywrap_py_exception_registry', 'tensorflow_core.python._pywrap_kernel_registry', 'tensorflow_core.python._pywrap_quantize_training', 'tensorflow_core.python._pywrap_scoped_annotation', 'tensorflow_core.python._pywrap_transform_graph', 'tensorflow_core.python._pywrap_traceme', 'tensorflow_core.python._pywrap_stacktrace_handler', 'tensorflow_core.core', 'tensorflow.core.framework', 'tensorflow.core.framework.graph_pb2', 'google.protobuf', 'google.protobuf.descriptor', 'google.protobuf.internal', 'google.protobuf.internal.api_implementation', 'google.protobuf.internal._api_implementation', 'google.protobuf.pyext', 'google.protobuf.internal.containers', 'google.protobuf.internal.enum_type_wrapper', 'google.protobuf.message', 'google.protobuf.pyext._message', 'google.protobuf.reflection', 'google.protobuf.message_factory', 'google.protobuf.descriptor_pool', 'google.protobuf.descriptor_database', 'google.protobuf.text_encoding', 'google.protobuf.pyext.cpp_message', 'google.protobuf.symbol_database', 'tensorflow.core.framework.node_def_pb2', 'tensorflow.core.framework.attr_value_pb2', 'tensorflow.core.framework.tensor_pb2', 'tensorflow.core.framework.resource_handle_pb2', 'tensorflow.core.framework.tensor_shape_pb2', 'google.protobuf.internal.well_known_types', 'tensorflow.core.framework.types_pb2', 'tensorflow.core.framework.function_pb2', 'tensorflow.core.framework.op_def_pb2', 'tensorflow.core.framework.versions_pb2', 'tensorflow.core.framework.summary_pb2', 'tensorflow.core.protobuf', 'tensorflow.core.protobuf.meta_graph_pb2', 'google.protobuf.any_pb2', 'tensorflow.core.protobuf.saved_object_graph_pb2', 'tensorflow.core.protobuf.trackable_object_graph_pb2', 'tensorflow.core.protobuf.struct_pb2', 'tensorflow.core.framework.variable_pb2', 'tensorflow.core.protobuf.saver_pb2', 'tensorflow.core.protobuf.config_pb2', 'tensorflow.core.framework.cost_graph_pb2', 'tensorflow.core.framework.step_stats_pb2', 'tensorflow.core.framework.allocation_description_pb2', 'tensorflow.core.framework.tensor_description_pb2', 'tensorflow.core.protobuf.cluster_pb2', 'tensorflow.core.protobuf.debug_pb2', 'tensorflow.core.protobuf.rewriter_config_pb2', 'tensorflow.core.protobuf.verifier_config_pb2', 'tensorflow.core.protobuf.tensorflow_server_pb2', 'tensorflow.core.util', 'tensorflow.core.util.event_pb2', 'tensorflow.python.framework', 'tensorflow.python.framework.framework_lib', 'tensorflow.python.framework.device', 'tensorflow_core.python.tf2', 'tensorflow.python.framework.device_spec', 'tensorflow.python.util', 'tensorflow.python.util.tf_export', 'tensorflow.python.util.tf_decorator', 'tensorflow.python.util.tf_stack', 'tensorflow_core.python._tf_stack', 'tensorflow.python.util.tf_inspect', 'tensorflow.python.framework.ops', 'six.moves', 'tensorflow.python.eager', 'tensorflow.python.eager.context', 'absl', 'absl.logging', 'absl.flags', 'getopt', 'absl.flags._argument_parser', 'csv', '_csv', 'absl.flags._helpers', 'fcntl', 'absl.flags._defines', 'absl.flags._exceptions', 'absl.flags._flag', 'absl._collections_abc', 'absl.flags._flagvalues', 'xml.dom', 'xml.dom.domreg', 'xml.dom.minidom', 'xml.dom.minicompat', 'xml.dom.xmlbuilder', 'xml.dom.NodeFilter', 'absl.flags._validators', 'absl.logging.converter', 'tensorflow.python.eager.executor', 'tensorflow.python.eager.monitoring', 'tensorflow.python.framework.c_api_util', 'tensorflow.core.framework.api_def_pb2', 'tensorflow.python.util.compat', 'tensorflow.python.util.tf_contextlib', 'tensorflow.python.util.is_in_graph_mode', 'tensorflow.python.eager.core', 'tensorflow.python.framework.errors', 'tensorflow.python.framework.errors_impl', 'tensorflow.core.lib', 'tensorflow.core.lib.core', 'tensorflow.core.lib.core.error_codes_pb2', 'tensorflow.core.protobuf.error_codes_pb2', 'tensorflow.python.framework.error_interpolation', 'tensorflow.core.protobuf.graph_debug_info_pb2', 'tensorflow.python.util.deprecation', 'tensorflow.python.platform.tf_logging', 'tensorflow.python.util.decorator_utils', 'tensorflow.python.eager.tape', 'tensorflow.python.util.lazy_loader', 'tensorflow.python.framework.composite_tensor', 'tensorflow.python.util.nest', 'wrapt', 'wrapt.wrappers', 'wrapt._wrappers', 'wrapt.decorators', 'wrapt.importer', 'tensorflow.python.framework.dtypes', 'tensorflow.python.framework.indexed_slices', 'tensorflow.python.framework.tensor_conversion_registry', 'tensorflow.python.framework.tensor_like', 'tensorflow.python.framework.tensor_shape', 'tensorflow.python.framework.type_spec', 'tensorflow.python.framework.registry', 'tensorflow.python.framework.traceable_stack', 'tensorflow.python.framework.versions', 'tensorflow.python.ops', 'tensorflow.python.ops.control_flow_util', 'tensorflow.python.platform.app', 'absl.app', 'pdb', 'cmd', 'code', 'codeop', 'absl.command_name', 'faulthandler', 'tensorflow.python.platform.flags', 'tensorflow.python.util.function_utils', 'tensorflow.python.util.lock_util', 'tensorflow.python.util.memory', 'tensorflow.python.util.object_identity', 'tensorflow_core.tools', 'tensorflow.tools.docs', 'tensorflow.tools.docs.doc_controls', 'tensorflow.python.framework.sparse_tensor', 'tensorflow.python.framework.constant_op', 'tensorflow.python.eager.execute', 'google.protobuf.text_format', 'encodings.raw_unicode_escape', 'encodings.unicode_escape', 'google.protobuf.internal.decoder', 'google.protobuf.internal.encoder', 'google.protobuf.internal.wire_format', 'google.protobuf.internal.type_checkers', 'tensorflow.python.framework.tensor_util', 'tensorflow.python.framework.fast_tensor_util', 'tensorflow.python.framework.tensor_spec', 'tensorflow.python.framework.common_shapes', 'tensorflow.python.ops.gen_sparse_ops', 'tensorflow.python.framework.op_def_registry', 'tensorflow_core.python._op_def_registry', 'tensorflow.python.framework.op_def_library', 'tensorflow.python.framework.op_callbacks', 'tensorflow.python.util.dispatch', 'tensorflow.python.framework.random_seed', 'tensorflow.python.framework.importer', 'tensorflow.python.framework.function', 'tensorflow.python.framework.graph_to_function_def', 'tensorflow.python.ops.array_ops', 'tensorflow.python.compat', 'tensorflow.python.compat.compat', 'tensorflow.python.ops.gen_array_ops', 'tensorflow.python.ops.gen_math_ops', 'tensorflow.python.ops.resource_variable_ops', 'tensorflow.python.framework.cpp_shape_inference_pb2', 'tensorflow.python.ops.gen_logging_ops', 'tensorflow.python.ops.gen_resource_variable_ops', 'tensorflow.python.ops.gen_state_ops', 'tensorflow.python.ops.math_ops', 'tensorflow.python.framework.graph_util', 'tensorflow.python.framework.graph_util_impl', 'tensorflow.python.ops.gen_data_flow_ops', 'tensorflow.python.ops.gen_nn_ops', 'tensorflow.python.ops.state_ops', 'tensorflow.python.ops.variables', 'tensorflow.python.ops.control_flow_ops', 'tensorflow.core.protobuf.control_flow_pb2', 'tensorflow.python.ops.gen_control_flow_ops', 'tensorflow.python.ops.tensor_array_ops', 'tensorflow.python.ops.list_ops', 'tensorflow.python.ops.gen_list_ops', 'tensorflow.python.util.tf_should_use', 'tensorflow.python.training', 'tensorflow.python.training.tracking', 'tensorflow.python.training.tracking.base', 'tensorflow.python.ops.gen_io_ops', 'tensorflow.python.training.saving', 'tensorflow.python.training.saving.saveable_object', 'tensorflow.python.ops.variable_scope', 'tensorflow.python.client', 'tensorflow.python.client.session', 'tensorflow.python.ops.session_ops', 'tensorflow.python.training.experimental', 'tensorflow.python.training.experimental.mixed_precision_global_state', 'tensorflow.python.ops.init_ops', 'tensorflow.python.ops.gen_linalg_ops', 'tensorflow.python.ops.linalg_ops_impl', 'tensorflow.python.ops.random_ops', 'tensorflow.python.ops.gen_random_ops', 'tensorflow.python.framework.load_library', 'tensorflow.python.lib', 'tensorflow.python.lib.io', 'tensorflow.python.lib.io.file_io', 'tensorflow.python.framework.config', 'tensorflow.python.client.client_lib', 'tensorflow.python.ops.standard_ops', 'tensorflow_core.python.autograph', 'tensorflow.python.autograph', 'tensorflow.python.autograph.operators', 'tensorflow.python.autograph.operators.control_flow', 'tensorflow.python.autograph.operators.py_builtins', 'tensorflow.python.autograph.utils', 'tensorflow.python.autograph.utils.context_managers', 'tensorflow.python.autograph.utils.misc', 'tensorflow.python.autograph.utils.py_func', 'tensorflow.python.ops.script_ops', 'tensorflow_core.python._pywrap_py_func', 'tensorflow.python.eager.backprop', 'tensorflow.python.eager.backprop_util', 'tensorflow.python.eager.imperative_grad', 'tensorflow.python.ops.unconnected_gradients', 'tensorflow.python.ops.check_ops', 'tensorflow.python.ops.default_gradient', 'tensorflow.python.framework.func_graph', 'tensorflow.python.eager.graph_only_ops', 'tensorflow.python.framework.auto_control_deps', 'tensorflow.python.ops.custom_gradient', 'tensorflow.python.ops.op_selector', 'tensorflow.python.ops.gen_script_ops', 'tensorflow.python.autograph.utils.tensor_list', 'tensorflow.python.autograph.utils.testing', 'tensorflow.python.autograph.utils.type_check', 'tensorflow.python.autograph.utils.tensors', 'tensorflow.python.data', 'tensorflow.python.data.experimental', 'tensorflow.python.data.experimental.ops', 'tensorflow.python.data.experimental.ops.batching', 'tensorflow.python.data.ops', 'tensorflow.python.data.ops.dataset_ops', 'tensorflow.python.data.experimental.ops.distribute_options', 'tensorflow.python.data.util', 'tensorflow.python.data.util.options', 'tensorflow.python.data.experimental.ops.optimization_options', 'tensorflow.python.data.experimental.ops.stats_options', 'tensorflow.python.data.experimental.ops.stats_aggregator', 'tensorflow.python.ops.gen_experimental_dataset_ops', 'tensorflow.python.ops.summary_ops_v2', 'tensorflow.python.eager.profiler', 'tensorflow.python.platform.gfile', 'tensorflow.python.framework.smart_cond', 'tensorflow.python.ops.gen_summary_ops', 'tensorflow.python.ops.summary_op_util', 'tensorflow.python.training.training_util', 'tensorflow.python.framework.graph_io', 'tensorflow.python.data.experimental.ops.threading_options', 'tensorflow.python.data.ops.iterator_ops', 'tensorflow.python.data.ops.optional_ops', 'tensorflow.python.data.util.structure', 'tensorflow.python.data.util.nest', 'tensorflow.python.ops.ragged', 'tensorflow.python.ops.ragged.ragged_array_ops', 'tensorflow.python.ops.sort_ops', 'tensorflow.python.ops.nn_ops', 'tensorflow.python.ops.ragged.ragged_functional_ops', 'tensorflow.python.ops.ragged.ragged_config', 'tensorflow.python.ops.ragged.ragged_tensor', 'tensorflow.python.ops.gen_ragged_conversion_ops', 'tensorflow.python.ops.ragged.ragged_tensor_value', 'tensorflow.python.ops.ragged.ragged_util', 'tensorflow.python.ops.gen_ragged_math_ops', 'tensorflow.python.ops.ragged.segment_id_ops', 'tensorflow.python.ops.ragged.ragged_math_ops', 'tensorflow.python.ops.ragged.ragged_batch_gather_ops', 'tensorflow.python.ops.ragged.ragged_gather_ops', 'tensorflow.python.ops.gen_ragged_array_ops', 'tensorflow.python.ops.ragged.ragged_batch_gather_with_default_op', 'tensorflow.python.ops.ragged.ragged_dispatch', 'tensorflow.python.ops.clip_ops', 'tensorflow.python.ops.data_flow_ops', 'tensorflow.python.lib.io.python_io', 'tensorflow.python.lib.io.tf_record', 'tensorflow.python.ops.gen_bitwise_ops', 'tensorflow.python.ops.parsing_ops', 'tensorflow.python.ops.gen_parsing_ops', 'tensorflow.python.ops.parsing_config', 'tensorflow.python.ops.sparse_ops', 'tensorflow.python.ops.string_ops', 'tensorflow.python.ops.gen_string_ops', 'tensorflow.python.ops.ragged.ragged_concat_ops', 'tensorflow.python.ops.ragged.ragged_squeeze_op', 'tensorflow.python.ops.ragged.ragged_string_ops', 'tensorflow.python.ops.ragged.ragged_tensor_shape', 'tensorflow.python.ops.ragged.ragged_where_op', 'tensorflow.python.ops.ragged.ragged_operators', 'tensorflow.python.ops.ragged.ragged_getitem', 'tensorflow.python.ops.ragged.ragged_conversion_ops', 'tensorflow.python.ops.ragged.ragged_factory_ops', 'tensorflow.python.ops.ragged.ragged_map_ops', 'tensorflow.python.ops.gen_dataset_ops', 'tensorflow.python.training.saver', 'tensorflow.python.framework.meta_graph', 'tensorflow.python.ops.io_ops', 'tensorflow.python.training.checkpoint_management', 'tensorflow.python.training.checkpoint_state_pb2', 'tensorflow.python.training.py_checkpoint_reader', 'tensorflow.python._pywrap_checkpoint_reader', 'tensorflow.python.training.saving.saveable_object_util', 'tensorflow.python.data.util.random_seed', 'tensorflow.python.data.util.sparse', 'tensorflow.python.data.util.traverse', 'tensorflow.python.eager.function', 'tensorflow.python.eager.forwardprop_util', 'tensorflow.python.ops.functional_ops', 'tensorflow.python.ops.gen_functional_ops', 'tensorflow.python.ops.gradients_util', 'tensorflow.python.ops.control_flow_state', 'tensorflow.python.training.tracking.tracking', 'tensorflow.python.eager.def_function', 'tensorflow.python.eager.lift_to_graph', 'tensorflow.python.training.tracking.data_structures', 'tensorflow.python.saved_model', 'tensorflow.python.saved_model.revived_types', 'tensorflow.python.training.tracking.layer_utils', 'tensorflow.python.data.util.convert', 'tensorflow.python.data.experimental.ops.cardinality', 'tensorflow.python.data.experimental.ops.counter', 'tensorflow.python.data.experimental.ops.scan_ops', 'tensorflow.python.data.experimental.ops.enumerate_ops', 'tensorflow.python.data.experimental.ops.error_ops', 'tensorflow.python.data.experimental.ops.get_single_element', 'tensorflow.python.data.experimental.ops.grouping', 'tensorflow.python.data.experimental.ops.interleave_ops', 'tensorflow.python.data.experimental.ops.random_ops', 'tensorflow.python.data.ops.readers', 'tensorflow.python.ops.gen_stateless_random_ops', 'tensorflow.python.data.experimental.ops.iterator_ops', 'tensorflow.python.training.basic_session_run_hooks', 'tensorflow.python.client.timeline', 'tensorflow.python.training.session_run_hook', 'tensorflow.python.training.summary_io', 'tensorflow.python.summary', 'tensorflow.python.summary.summary_iterator', 'tensorflow.python.summary.writer', 'tensorflow.python.summary.writer.writer', 'tensorflow.python.summary.plugin_asset', 'tensorflow.python.summary.writer.event_file_writer', 'tensorflow.python.summary.writer.event_file_writer_v2', 'tensorflow.python.summary.writer.writer_cache', 'tensorflow.python.data.experimental.ops.parsing_ops', 'tensorflow.python.data.experimental.ops.prefetching_ops', 'tensorflow.python.data.experimental.ops.readers', 'gzip', 'tensorflow.python.data.experimental.ops.resampling', 'tensorflow.python.ops.logging_ops', 'tensorflow.python.data.experimental.ops.shuffle_ops', 'tensorflow.python.data.experimental.ops.stats_ops', 'tensorflow.python.data.experimental.ops.take_while_ops', 'tensorflow.python.data.experimental.ops.unique', 'tensorflow.python.data.experimental.ops.writers', 'tensorflow.python.util.all_util', 'tensorflow.python.autograph.operators.special_values', 'tensorflow.python.autograph.utils.ag_logging', 'tensorflow.python.autograph.operators.data_structures', 'tensorflow.python.autograph.operators.exceptions', 'tensorflow.python.autograph.operators.logical', 'tensorflow.python.autograph.operators.slices', 'tensorflow.python.autograph.core', 'tensorflow.python.autograph.core.converter', 'tensorflow.python.autograph.pyct', 'tensorflow.python.autograph.pyct.anno', 'gast', 'gast.gast', 'gast.ast3', 'gast.astn', 'tensorflow.python.autograph.pyct.ast_util', 'tensorflow.python.autograph.pyct.parser', 'tensorflow.python.autograph.pyct.inspect_utils', 'tensorflow.python.autograph.pyct.cfg', 'tensorflow.python.autograph.pyct.compiler', 'astor', 'astor.code_gen', 'astor.op_util', 'astor.node_util', 'astor.string_repr', 'astor.source_repr', 'astor.file_util', 'astor.tree_walk', 'tensorflow.python.autograph.pyct.origin_info', 'tensorflow.python.autograph.pyct.pretty_printer', 'termcolor', 'tensorflow.python.autograph.pyct.qual_names', 'tensorflow.python.autograph.pyct.templates', 'tensorflow.python.autograph.pyct.transformer', 'tensorflow.python.autograph.pyct.static_analysis', 'tensorflow.python.autograph.pyct.static_analysis.activity', 'tensorflow.python.autograph.pyct.static_analysis.annos', 'tensorflow.python.autograph.pyct.static_analysis.liveness', 'tensorflow.python.autograph.pyct.static_analysis.reaching_definitions', 'tensorflow.python.autograph.impl', 'tensorflow.python.autograph.impl.api', 'tensorflow.python.autograph.core.ag_ctx', 'tensorflow.python.autograph.impl.conversion', 'tensorflow.python.autograph.converters', 'tensorflow.python.autograph.converters.arg_defaults', 'tensorflow.python.autograph.converters.asserts', 'tensorflow.python.autograph.converters.break_statements', 'tensorflow.python.autograph.converters.call_trees', 'tensorflow.python.autograph.converters.conditional_expressions', 'tensorflow.python.autograph.converters.continue_statements', 'tensorflow.python.autograph.converters.control_flow', 'tensorflow.python.autograph.converters.directives', 'tensorflow.python.autograph.lang', 'tensorflow.python.autograph.lang.directives', 'tensorflow.python.autograph.converters.function_scopes', 'tensorflow.python.autograph.converters.lists', 'tensorflow.python.autograph.converters.logical_expressions', 'tensorflow.python.autograph.converters.return_statements', 'tensorflow.python.autograph.converters.slices', 'tensorflow.python.autograph.core.config', 'tensorflow.python.autograph.core.config_lib', 'tensorflow.python.autograph.core.function_wrappers', 'tensorflow.python.autograph.core.naming', 'tensorflow.python.autograph.core.unsupported_features_checker', 'tensorflow.python.autograph.lang.special_functions', 'tensorflow.python.autograph.pyct.errors', 'tensorflow.python.training.experimental.loss_scaling_gradient_tape', 'tensorflow.python.distribute', 'tensorflow.python.distribute.cluster_resolver', 'tensorflow.python.distribute.cluster_resolver.cluster_resolver', 'tensorflow.python.training.server_lib', 'tensorflow.python.distribute.cluster_resolver.gce_cluster_resolver', 'tensorflow.python.distribute.cluster_resolver.kubernetes_cluster_resolver', 'tensorflow.python.distribute.cluster_resolver.slurm_cluster_resolver', 'tensorflow.python.distribute.cluster_resolver.tfconfig_cluster_resolver', 'tensorflow.python.distribute.cluster_resolver.tpu_cluster_resolver', 'six.moves.urllib', 'six.moves.urllib.error', 'six.moves.urllib.request', 'tensorflow.python.distribute.cross_device_ops', 'tensorflow.python.client.device_lib', 'tensorflow.core.framework.device_attributes_pb2', 'tensorflow_core.python._pywrap_device_lib', 'tensorflow.python.distribute.cross_device_utils', 'tensorflow.python.distribute.all_reduce', 'tensorflow.python.ops.nccl_ops', 'tensorflow.python.ops.gen_nccl_ops', 'tensorflow.python.distribute.values', 'tensorflow.python.distribute.device_util', 'tensorflow.python.distribute.distribute_lib', 'tensorflow.python.distribute.distribution_strategy_context', 'tensorflow.python.distribute.numpy_dataset', 'tensorflow.python.distribute.reduce_util', 'tensorflow.python.ops.losses', 'tensorflow.python.ops.losses.loss_reduction', 'tensorflow.python.ops.losses.losses_impl', 'tensorflow.python.ops.confusion_matrix', 'tensorflow.python.ops.nn', 'tensorflow.python.ops.ctc_ops', 'tensorflow.python.ops.gen_ctc_ops', 'tensorflow.python.ops.inplace_ops', 'tensorflow.python.ops.linalg_ops', 'tensorflow.python.ops.map_fn', 'tensorflow.python.ops.nn_grad', 'tensorflow.python.ops.embedding_ops', 'tensorflow.python.ops.data_flow_grad', 'tensorflow.python.ops.nn_impl', 'tensorflow.python.ops.candidate_sampling_ops', 'tensorflow.python.ops.gen_candidate_sampling_ops', 'tensorflow.python.ops.losses.util', 'tensorflow.python.ops.weights_broadcast_ops', 'tensorflow.python.ops.sets', 'tensorflow.python.ops.sets_impl', 'tensorflow.python.ops.gen_set_ops', 'tensorflow.python.ops.collective_ops', 'tensorflow.python.ops.gen_collective_ops', 'tensorflow.python.framework.kernels', 'tensorflow.core.framework.kernel_def_pb2', 'tensorflow.python.distribute.mirrored_strategy', 'tensorflow.python.distribute.input_lib', 'tensorflow.python.data.experimental.ops.distribute', 'tensorflow.python.data.ops.multi_device_iterator_ops', 'tensorflow.python.distribute.input_ops', 'tensorflow.python.distribute.multi_worker_util', 'tensorflow.python.distribute.distribute_coordinator_context', 'tensorflow.python.distribute.shared_variable_creator', 'tensorflow.python.training.coordinator', 'tensorflow.python.distribute.one_device_strategy', 'tensorflow.python.distribute.experimental', 'tensorflow.python.distribute.central_storage_strategy', 'tensorflow.python.distribute.parameter_server_strategy', 'tensorflow.python.training.device_setter', 'tensorflow.python.distribute.collective_all_reduce_strategy', 'tensorflow.python.distribute.tpu_strategy', 'tensorflow.python.tpu', 'tensorflow.python.tpu.device_assignment', 'tensorflow.python.tpu.topology', 'tensorflow.core.protobuf.tpu', 'tensorflow.core.protobuf.tpu.topology_pb2', 'tensorflow.python.tpu.tpu', 'tensorflow.core.protobuf.tpu.dynamic_padding_pb2', 'tensorflow.python.compiler', 'tensorflow.python.compiler.xla', 'tensorflow.python.compiler.xla.jit', 'tensorflow.python.compiler.xla.xla', 'tensorflow_core.compiler', 'tensorflow.compiler.jit', 'tensorflow.compiler.jit.ops', 'tensorflow.compiler.jit.ops.xla_ops', 'tensorflow.compiler.jit.ops.xla_ops_grad', 'tensorflow.python.distribute.summary_op_util', 'tensorflow.python.tpu.tpu_function', 'tensorflow.python.tpu.ops', 'tensorflow.python.tpu.ops.tpu_ops', 'tensorflow.python.ops.gen_tpu_ops', 'tensorflow.python.tpu.tpu_strategy_util', 'tensorflow.python.tpu.tpu_system_metadata', 'tensorflow.python.tpu.training_loop', 'tensorflow.python.tpu.tensor_tracer', 'tensorflow.python.platform.analytics', 'tensorflow.python.tpu.tensor_tracer_flags', 'tensorflow.python.tpu.tensor_tracer_report', 'tensorflow.python.tpu.tensor_tracer_pb2', 'tensorflow.python.training.experimental.loss_scale', 'tensorflow.python.ops.array_grad', 'tensorflow.python.ops.cudnn_rnn_grad', 'tensorflow.python.ops.gen_cudnn_rnn_ops', 'tensorflow.python.ops.manip_grad', 'tensorflow.python.ops.manip_ops', 'tensorflow.python.ops.gen_manip_ops', 'tensorflow.python.ops.math_grad', 'tensorflow.python.ops.random_grad', 'tensorflow.python.ops.rnn_grad', 'tensorflow.python.ops.gen_rnn_ops', 'tensorflow.python.ops.sparse_grad', 'tensorflow.python.ops.state_grad', 'tensorflow.python.ops.tensor_array_grad', 'tensorflow.python.ops.special_math_ops', 'opt_einsum', 'opt_einsum.blas', 'opt_einsum.helpers', 'opt_einsum.parser', 'opt_einsum.paths', 'opt_einsum.path_random', 'opt_einsum.contract', 'opt_einsum.backends', 'opt_einsum.backends.cupy', 'opt_einsum.sharing', 'opt_einsum.backends.dispatch', 'opt_einsum.backends.object_arrays', 'opt_einsum.backends.jax', 'opt_einsum.backends.tensorflow', 'opt_einsum.backends.theano', 'opt_einsum.backends.torch', 'opt_einsum._version', 'tensorflow.compiler.tf2xla', 'tensorflow.compiler.tf2xla.ops', 'tensorflow.compiler.tf2xla.ops.gen_xla_ops', 'tensorflow.python.eager.wrap_function', 'tensorflow.python.saved_model.nested_structure_coder', 'tensorflow.python.ops.batch_ops', 'tensorflow.python.ops.gen_batch_ops', 'tensorflow.python.ops.critical_section_ops', 'tensorflow.python.ops.gradients', 'tensorflow.python.eager.forwardprop', 'tensorflow.python.ops.gradients_impl', 'tensorflow.python.ops.control_flow_grad', 'tensorflow.python.ops.image_grad', 'tensorflow.python.ops.gen_image_ops', 'tensorflow.python.ops.linalg_grad', 'tensorflow.python.ops.linalg', 'tensorflow.python.ops.linalg.linalg_impl', 'tensorflow.python.ops.linalg.linear_operator_util', 'tensorflow.python.module', 'tensorflow.python.module.module', 'tensorflow.python.ops.optional_grad', 'tensorflow.python.ops.histogram_ops', 'tensorflow.python.ops.lookup_ops', 'tensorflow.python.ops.gen_lookup_ops', 'tensorflow.python.ops.numerics', 'tensorflow.python.ops.partitioned_variables', 'tensorflow.python.ops.proto_ops', 'tensorflow.python.ops.gen_decode_proto_ops', 'tensorflow.python.ops.gen_encode_proto_ops', 'tensorflow.python.ops.stateless_random_ops', 'tensorflow.python.ops.template', 'tensorflow.python.training.tracking.util', 'tensorflow.python.training.saving.functional_saver', 'tensorflow.python.training.tracking.graph_view', 'tensorflow.python.training.optimizer', 'tensorflow.python.training.slot_creator', 'tensorflow.python.ops.parallel_for', 'tensorflow.python.ops.parallel_for.control_flow_ops', 'tensorflow.python.ops.parallel_for.pfor', 'tensorflow.compiler.tf2xla.python', 'tensorflow.compiler.tf2xla.python.xla', 'tensorflow.python.ops.bitwise_ops', 'tensorflow.python.ops.parallel_for.gradients', 'tensorflow.python.compiler.tensorrt', 'tensorflow.python.compiler.tensorrt.trt_convert', 'tensorflow.compiler.tf2tensorrt', 'tensorflow.compiler.tf2tensorrt.wrap_py_utils', '_wrap_py_utils', 'tensorflow.python.framework.convert_to_constants', 'tensorflow.python.grappler', 'tensorflow.python.grappler.tf_optimizer', 'tensorflow.python.grappler.cluster', 'tensorflow.core.grappler', 'tensorflow.core.grappler.costs', 'tensorflow.core.grappler.costs.op_performance_data_pb2', 'tensorflow.core.protobuf.device_properties_pb2', 'tensorflow.python.saved_model.builder', 'tensorflow.python.saved_model.builder_impl', 'tensorflow.core.protobuf.saved_model_pb2', 'tensorflow.python.saved_model.constants', 'tensorflow.python.saved_model.signature_def_utils', 'tensorflow.python.saved_model.signature_def_utils_impl', 'tensorflow.python.saved_model.signature_constants', 'tensorflow.python.saved_model.utils_impl', 'tensorflow.python.saved_model.load', 'tensorflow.python.saved_model.function_deserialization', 'tensorflow.python.framework.function_def_to_graph', 'tensorflow.python.saved_model.load_v1_in_v2', 'tensorflow.python.saved_model.loader_impl', 'tensorflow.python.saved_model.signature_serialization', 'tensorflow.python.training.monitored_session', 'tensorflow.python.ops.resources', 'tensorflow.python.summary.summary', 'google.protobuf.json_format', 'tensorflow.python.training.queue_runner', 'tensorflow.python.training.queue_runner_impl', 'tensorflow.core.protobuf.queue_runner_pb2', 'tensorflow.python.training.session_manager', 'tensorflow.python.saved_model.loader', 'tensorflow.python.saved_model.save', 'tensorflow.python.saved_model.function_serialization', 'tensorflow.python.saved_model.save_options', 'tensorflow.python.saved_model.tag_constants', 'tensorflow.python.ops.initializers_ns', 'tensorflow_core.python.keras', 'tensorflow.python.keras', 'tensorflow.python.keras.models', 'tensorflow.python.keras.backend', 'tensorflow.python.distribute.distribute_coordinator', 'tensorflow.python.keras.backend_config', 'tensorflow.python.ops.image_ops', 'tensorflow.python.ops.image_ops_impl', 'tensorflow.python.training.moving_averages', 'tensorflow.python.keras.metrics', 'tensorflow.python.keras.engine', 'tensorflow.python.keras.engine.base_layer', 'tensorflow.python.keras.constraints', 'tensorflow.python.keras.utils', 'tensorflow.python.keras.utils.generic_utils', 'tensorflow.python.keras.initializers', 'tensorflow.python.ops.init_ops_v2', 'tensorflow.python.keras.regularizers', 'tensorflow.python.keras.engine.base_layer_utils', 'tensorflow.python.ops.control_flow_v2_func_graphs', 'tensorflow.python.keras.engine.input_spec', 'tensorflow.python.keras.engine.node', 'tensorflow.python.keras.mixed_precision', 'tensorflow.python.keras.mixed_precision.experimental', 'tensorflow.python.keras.mixed_precision.experimental.autocast_variable', 'tensorflow.python.keras.mixed_precision.experimental.policy', 'tensorflow.python.keras.mixed_precision.experimental.loss_scale', 'tensorflow.python.keras.saving', 'tensorflow.python.keras.saving.saved_model', 'tensorflow.python.keras.saving.saved_model.layer_serialization', 'tensorflow.python.keras.saving.saved_model.base_serialization', 'tensorflow.python.util.serialization', 'tensorflow.python.keras.saving.saved_model.constants', 'tensorflow.python.keras.saving.saved_model.save_impl', 'tensorflow.python.keras.saving.saving_utils', 'tensorflow.python.keras.losses', 'tensorflow.python.keras.utils.losses_utils', 'tensorflow.python.keras.utils.tf_utils', 'tensorflow.python.keras.optimizers', 'tensorflow.python.keras.optimizer_v2', 'tensorflow.python.keras.optimizer_v2.adadelta', 'tensorflow.python.keras.optimizer_v2.optimizer_v2', 'tensorflow.python.keras.optimizer_v2.learning_rate_schedule', 'tensorflow.python.training.training_ops', 'tensorflow.python.training.gen_training_ops', 'tensorflow.python.keras.optimizer_v2.adagrad', 'tensorflow.python.keras.optimizer_v2.adam', 'tensorflow.python.keras.optimizer_v2.adamax', 'tensorflow.python.keras.optimizer_v2.ftrl', 'tensorflow.python.keras.optimizer_v2.gradient_descent', 'tensorflow.python.keras.optimizer_v2.nadam', 'tensorflow.python.keras.optimizer_v2.rmsprop', 'tensorflow.python.keras.utils.io_utils', 'h5py', 'h5py._errors', 'h5py._hl', 'h5py._hl.compat', 'h5py.version', 'h5py.h5', 'h5py.defs', 'h5py._objects', 'h5py._conv', 'h5py.h5r', 'h5py.h5t', 'h5py.utils', 'h5py.h5py_warnings', 'h5py.h5z', 'h5py.h5a', 'h5py.h5s', 'h5py.h5p', 'h5py.h5ac', 'h5py._proxy', 'h5py.h5d', 'h5py.h5ds', 'h5py.h5f', 'h5py.h5g', 'h5py.h5i', 'h5py.h5fd', 'h5py.h5pl', 'h5py._hl.filters', 'h5py._hl.base', 'h5py._hl.files', 'h5py._hl.group', 'h5py.h5o', 'h5py.h5l', 'h5py._hl.dataset', 'h5py._hl.selections', 'h5py._hl.selections2', 'h5py._hl.datatype', 'h5py._hl.vds', 'h5py._hl.attrs', 'tensorflow.python.keras.saving.saved_model.load', 'tensorflow.python.keras.saving.saved_model.utils', 'tensorflow.python.keras.saving.saved_model.serialized_attributes', 'tensorflow.python.keras.utils.metrics_utils', 'tensorflow.python.keras.engine.network', 'tensorflow.python.keras.engine.input_layer', 'tensorflow.python.keras.distribute', 'tensorflow.python.keras.distribute.distributed_training_utils', 'tensorflow.python.keras.callbacks', 'tensorflow.python.distribute.distributed_file_utils', 'tensorflow.python.keras.distribute.multi_worker_training_state', 'tensorflow.python.keras.utils.mode_keys', 'tensorflow.python.saved_model.model_utils', 'tensorflow.python.saved_model.model_utils.export_output', 'tensorflow.python.saved_model.model_utils.export_utils', 'tensorflow.python.saved_model.model_utils.mode_keys', 'tensorflow.python.keras.utils.data_utils', 'multiprocessing.dummy', 'multiprocessing.dummy.connection', 'tensorflow.python.keras.engine.training_utils', 'tensorflow.python.framework.composite_tensor_utils', 'tensorflow.python.keras.saving.hdf5_format', 'tensorflow.python.keras.saving.model_config', 'yaml', 'yaml.error', 'yaml.tokens', 'yaml.events', 'yaml.nodes', 'yaml.loader', 'yaml.reader', 'yaml.scanner', 'yaml.parser', 'yaml.composer', 'yaml.constructor', 'yaml.resolver', 'yaml.dumper', 'yaml.emitter', 'yaml.serializer', 'yaml.representer', 'yaml.cyaml', 'yaml._yaml', 'tensorflow.python.keras.utils.conv_utils', 'tensorflow.python.keras.saving.save', 'tensorflow.python.keras.saving.saved_model.save', 'tensorflow.python.keras.saving.saved_model.network_serialization', 'tensorflow.python.keras.utils.layer_utils', 'tensorflow.python.keras.engine.sequential', 'tensorflow.python.keras.layers', 'tensorflow.python.keras.engine.base_preprocessing_layer', 'tensorflow.python.keras.engine.training_generator', 'tensorflow.python.keras.layers.preprocessing', 'tensorflow.python.keras.layers.preprocessing.normalization_v1', 'tensorflow.python.keras.engine.base_preprocessing_layer_v1', 'tensorflow.python.keras.layers.preprocessing.normalization', 'tensorflow.python.keras.layers.preprocessing.text_vectorization_v1', 'tensorflow.python.keras.layers.preprocessing.text_vectorization', 'tensorflow.python.keras.layers.advanced_activations', 'tensorflow.python.keras.layers.convolutional', 'tensorflow.python.keras.activations', 'tensorflow.python.keras.layers.pooling', 'tensorflow.python.keras.layers.core', 'tensorflow.python.keras.layers.dense_attention', 'tensorflow.python.keras.layers.embeddings', 'tensorflow.python.keras.layers.local', 'tensorflow.python.keras.layers.merge', 'tensorflow.python.keras.layers.noise', 'tensorflow.python.keras.layers.normalization', 'tensorflow.python.keras.layers.normalization_v2', 'tensorflow.python.keras.layers.kernelized', 'tensorflow.python.keras.layers.recurrent', 'tensorflow.python.keras.layers.recurrent_v2', 'tensorflow.python.keras.layers.convolutional_recurrent', 'tensorflow.python.keras.layers.cudnn_recurrent', 'tensorflow.python.keras.layers.wrappers', 'tensorflow.python.keras.layers.rnn_cell_wrapper_v2', 'tensorflow.python.ops.rnn_cell_wrapper_impl', 'tensorflow.python.keras.layers.serialization', 'tensorflow.python.keras.engine.training', 'tensorflow.python.keras.engine.training_arrays', 'tensorflow.python.keras.engine.training_distributed', 'tensorflow.python.keras.engine.partial_batch_padding_handler', 'tensorflow.python.keras.engine.training_eager', 'tensorflow.python.keras.mixed_precision.experimental.loss_scale_optimizer', 'tensorflow.python.keras.engine.training_v2', 'tensorflow.python.keras.engine.data_adapter', 'pandas', 'pytz', 'pytz.exceptions', 'pytz.lazy', 'pytz.tzinfo', 'pytz.tzfile', 'dateutil', 'dateutil._version', 'pandas.compat', 'pandas.compat.chainmap', 'dateutil.parser', 'dateutil.parser._parser', 'dateutil.relativedelta', 'dateutil._common', 'dateutil.tz', 'dateutil.tz.tz', 'dateutil.tz._common', 'dateutil.tz._factories', 'dateutil.parser.isoparser', 'pandas.compat.numpy', 'pandas._libs', 'pandas._libs.tslib', 'pandas._libs.tslibs', 'pandas._libs.tslibs.conversion', 'pandas._libs.tslibs.np_datetime', '_cython_0_28_2', 'pandas._libs.tslibs.nattype', 'pandas._libs.tslibs.timedeltas', 'pandas._libs.tslibs.timezones', 'pandas._libs.tslibs.parsing', 'pandas._libs.tslibs.ccalendar', 'pandas._libs.tslibs.strptime', 'pandas._libs.tslibs.timestamps', 'pandas._libs.tslibs.fields', 'pandas._libs.hashtable', 'pandas._libs.missing', 'pandas._libs.lib', 'pandas.core', 'pandas.core.config_init', 'pandas.core.config', 'pandas.io', 'pandas.io.formats', 'pandas.io.formats.printing', 'pandas.core.dtypes', 'pandas.core.dtypes.inference', 'pandas.io.formats.console', 'pandas.io.formats.terminal', 'pandas.core.api', 'pandas.core.algorithms', 'pandas.core.dtypes.cast', 'pandas.core.dtypes.common', 'pandas._libs.algos', 'pandas.core.dtypes.dtypes', 'pandas.core.dtypes.generic', 'pandas.core.dtypes.base', 'pandas.errors', 'pandas.core.dtypes.missing', 'pandas.core.common', 'pandas.util', 'pandas.util._decorators', 'pandas._libs.properties', 'pandas.core.util', 'pandas.core.util.hashing', 'pandas._libs.hashing', 'pandas.core.arrays', 'pandas.core.arrays.base', 'pandas.compat.numpy.function', 'pandas.util._validators', 'pandas.core.arrays.categorical', 'pandas.core.accessor', 'pandas.core.base', 'pandas.core.nanops', 'pandas.core.missing', 'pandas.core.groupby', 'pandas.core.groupby.groupby', 'pandas.core.index', 'pandas.core.indexes', 'pandas.core.indexes.api', 'pandas.core.indexes.base', 'pandas._libs.index', 'pandas._libs.tslibs.period', 'pandas._libs.tslibs.frequencies', 'pandas._libs.tslibs.resolution', 'pandas.tseries', 'pandas.tseries.offsets', 'pandas.core.tools', 'pandas.core.tools.datetimes', 'dateutil.easter', 'pandas._libs.tslibs.offsets', 'pandas.tseries.frequencies', 'pandas._libs.join', 'pandas.core.ops', 'pandas._libs.ops', 'pandas.core.indexes.frozen', 'pandas.core.dtypes.concat', 'pandas.core.sorting', 'pandas.core.strings', 'pandas.core.indexes.category', 'pandas.core.indexes.multi', 'pandas.core.indexes.interval', 'pandas._libs.interval', 'pandas.core.indexes.datetimes', 'pandas.core.indexes.numeric', 'pandas.core.indexes.datetimelike', 'pandas.core.tools.timedeltas', 'pandas.core.indexes.timedeltas', 'pandas.core.indexes.range', 'pandas.core.indexes.period', 'pandas.core.frame', 'pandas.core.generic', 'pandas.core.indexing', 'pandas._libs.indexing', 'pandas.core.internals', 'pandas._libs.internals', 'pandas.core.sparse', 'pandas.core.sparse.array', 'pandas._libs.sparse', 'pandas.io.formats.format', 'pandas.io.common', 'pandas.core.series', 'pandas.core.indexes.accessors', 'pandas.plotting', 'pandas.plotting._misc', 'pandas.plotting._style', 'pandas.plotting._compat', 'pandas.plotting._tools', 'pandas.plotting._core', 'pandas.plotting._converter', 'matplotlib', 'matplotlib.cbook', 'matplotlib.cbook.deprecation', 'matplotlib.cbook._backports', 'matplotlib.compat', 'matplotlib.compat.subprocess', 'matplotlib.rcsetup', 'matplotlib.testing', 'matplotlib.fontconfig_pattern', 'pyparsing', 'matplotlib.colors', 'matplotlib._color_data', 'cycler', 'matplotlib._version'] INFO:root:正在从数据库读取原始数据 INFO:root:正在对原始数据进行数据扩增 INFO:root:正在统计原始数据的标签类型 INFO:root:正在制作词表 INFO:root:正在获取词向量 INFO:root:开始训练基础分类器 INFO:root:初始分类器准确率为0.508833922261484 INFO:root:开始第1次重训练 INFO:root:开始第2次重训练 INFO:root:开始第3次重训练 INFO:root:开始第4次重训练 INFO:root:开始第5次重训练 INFO:root:开始第6次重训练 INFO:root:开始第7次重训练 INFO:root:开始第8次重训练 INFO:root:训练完成,测试集准确率为0.508833922261484 DEBUG:matplotlib:$HOME=/Users/tanghaojie DEBUG:matplotlib:matplotlib data path /Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/matplotlib/mpl-data DEBUG:matplotlib:loaded rc file /Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/matplotlib/mpl-data/matplotlibrc DEBUG:matplotlib:matplotlib version 2.2.2 DEBUG:matplotlib:interactive is False DEBUG:matplotlib:platform is darwin DEBUG:matplotlib:loaded modules: ['builtins', 'sys', '_frozen_importlib', '_imp', '_warnings', '_thread', '_weakref', '_frozen_importlib_external', '_io', 'marshal', 'posix', 'zipimport', 'encodings', 'codecs', '_codecs', 'encodings.aliases', 'encodings.utf_8', '_signal', '__main__', 'encodings.latin_1', 'io', 'abc', '_weakrefset', '_bootlocale', '_locale', 'encodings.ascii', 'site', 'os', 'errno', 'stat', '_stat', 'posixpath', 'genericpath', 'os.path', '_collections_abc', '_sitebuiltins', 'sysconfig', '_sysconfigdata_m_darwin_darwin', '_osx_support', 're', 'enum', 'types', 'functools', '_functools', 'collections', 'operator', '_operator', 'keyword', 'heapq', '_heapq', 'itertools', 'reprlib', '_collections', 'weakref', 'collections.abc', 'sre_compile', '_sre', 'sre_parse', 'sre_constants', 'copyreg', 'importlib', 'importlib._bootstrap', 'importlib._bootstrap_external', 'warnings', 'importlib.util', 'importlib.abc', 'importlib.machinery', 'contextlib', 'google', 'mpl_toolkits', 'zope', 'idlelib', 'idlelib.run', 'linecache', 'tokenize', 'token', 'queue', 'threading', 'time', 'traceback', 'tkinter', '_tkinter', 'tkinter.constants', 'idlelib.autocomplete', 'string', '_string', 'idlelib.autocomplete_w', 'platform', 'subprocess', 'signal', '_posixsubprocess', 'select', 'selectors', 'math', 'idlelib.multicall', 'idlelib.config', 'configparser', 'idlelib.hyperparser', 'idlelib.pyparse', 'idlelib.calltips', 'inspect', 'ast', '_ast', 'dis', 'opcode', '_opcode', 'textwrap', 'idlelib.calltip_w', 'idlelib.debugger_r', 'idlelib.debugger', 'bdb', 'fnmatch', 'idlelib.macosx', 'idlelib.scrolledlist', 'idlelib.windows', 'idlelib.debugobj_r', 'idlelib.rpc', 'pickle', 'struct', '_struct', '_compat_pickle', '_pickle', 'socket', '_socket', 'socketserver', 'idlelib.iomenu', 'shlex', 'tempfile', 'shutil', 'zlib', 'bz2', '_compression', '_bz2', 'lzma', '_lzma', 'pwd', 'grp', 'random', 'hashlib', '_hashlib', '_blake2', '_sha3', 'bisect', '_bisect', '_random', 'locale', 'idlelib.stackviewer', 'idlelib.debugobj', 'idlelib.tree', 'idlelib.zoomheight', 'pydoc', 'pkgutil', 'urllib', 'urllib.parse', 'copy', 'torch', 'torch._utils', 'torch._utils_internal', '__future__', 'torch.version', 'torch._six', 'numpy', 'numpy._globals', 'numpy.__config__', 'numpy.version', 'numpy._distributor_init', 'numpy.core', 'numpy.core.multiarray', 'numpy.core.overrides', 'datetime', '_datetime', 'numpy.core._multiarray_umath', 'numpy.compat', 'numpy.compat._inspect', 'numpy.compat.py3k', 'pathlib', 'ntpath', 'numpy.core.umath', 'numpy.core.numerictypes', 'numbers', 'numpy.core._string_helpers', 'numpy.core._type_aliases', 'numpy.core._dtype', 'numpy.core.numeric', 'numpy.core.shape_base', 'numpy.core._asarray', 'numpy.core.fromnumeric', 'numpy.core._methods', 'numpy.core._exceptions', 'numpy.core._ufunc_config', 'numpy.core.arrayprint', 'numpy.core.defchararray', 'numpy.core.records', 'numpy.core.memmap', 'numpy.core.function_base', 'numpy.core.machar', 'numpy.core.getlimits', 'numpy.core.einsumfunc', 'numpy.core._add_newdocs', 'numpy.core._multiarray_tests', 'numpy.core._dtype_ctypes', '_ctypes', 'ctypes', 'ctypes._endian', 'numpy.core._internal', 'numpy._pytesttester', 'numpy.lib', 'numpy.lib.mixins', 'numpy.lib.scimath', 'numpy.lib.type_check', 'numpy.lib.ufunclike', 'numpy.lib.index_tricks', 'numpy.matrixlib', 'numpy.matrixlib.defmatrix', 'numpy.linalg', 'numpy.linalg.linalg', 'numpy.lib.twodim_base', 'numpy.linalg.lapack_lite', 'numpy.linalg._umath_linalg', 'numpy.lib.function_base', 'numpy.lib.histograms', 'numpy.lib.stride_tricks', 'numpy.lib.nanfunctions', 'numpy.lib.shape_base', 'numpy.lib.polynomial', 'numpy.lib.utils', 'numpy.lib.arraysetops', 'numpy.lib.npyio', 'numpy.lib.format', 'numpy.lib._datasource', 'numpy.lib._iotools', 'numpy.lib.financial', 'decimal', '_decimal', 'numpy.lib.arrayterator', 'numpy.lib.arraypad', 'numpy.lib._version', 'numpy.fft', 'numpy.fft._pocketfft', 'numpy.fft._pocketfft_internal', 'numpy.fft.helper', 'numpy.polynomial', 'numpy.polynomial.polynomial', 'numpy.polynomial.polyutils', 'numpy.polynomial._polybase', 'numpy.polynomial.chebyshev', 'numpy.polynomial.legendre', 'numpy.polynomial.hermite', 'numpy.polynomial.hermite_e', 'numpy.polynomial.laguerre', 'numpy.random', 'numpy.random._pickle', 'numpy.random.mtrand', 'cython_runtime', 'numpy.random._bit_generator', '_cython_0_29_19', 'numpy.random._common', 'secrets', 'base64', 'binascii', 'hmac', 'numpy.random._bounded_integers', 'numpy.random._mt19937', 'numpy.random._philox', 'numpy.random._pcg64', 'numpy.random._sfc64', 'numpy.random._generator', 'numpy.ctypeslib', 'numpy.ma', 'numpy.ma.core', 'numpy.ma.extras', 'numpy.testing', 'unittest', 'unittest.result', 'unittest.util', 'unittest.case', 'difflib', 'logging', 'atexit', 'pprint', 'unittest.suite', 'unittest.loader', 'unittest.main', 'argparse', 'gettext', 'unittest.runner', 'unittest.signals', 'numpy.testing._private', 'numpy.testing._private.utils', 'gc', 'numpy.testing._private.decorators', 'numpy.testing._private.nosetester', 'torch._C._onnx', 'torch._C._jit_tree_views', 'torch._C._jit', 'torch._C', 'torch.random', 'torch.serialization', 'tarfile', 'zipfile', 'torch._tensor_str', 'torch.tensor', 'torch.utils', 'torch.utils.hooks', 'torch.storage', 'torch.cuda', 'multiprocessing', 'multiprocessing.context', 'multiprocessing.process', 'multiprocessing.reduction', 'array', '__mp_main__', 'multiprocessing.util', 'torch.cuda._utils', 'torch.cuda.random', 'torch.cuda.sparse', 'torch.cuda.profiler', 'torch.cuda.nvtx', 'glob', 'torch.cuda.streams', 'torch.sparse', 'torch.functional', 'torch.nn', 'torch.nn.modules', 'torch.nn.modules.module', 'torch.nn.backends', 'torch.nn.backends.thnn', 'torch.nn.backends.backend', 'torch.nn._functions', 'torch.nn._functions.thnn', 'torch.nn._functions.thnn.auto', 'torch._thnn', 'torch._thnn.utils', 'torch.autograd', 'torch.autograd.variable', 'torch.autograd.function', 'torch.autograd.gradcheck', 'torch.testing', 'torch.autograd.grad_mode', 'torch.autograd.anomaly_mode', 'torch.autograd.profiler', 'torch.nn._functions.thnn.auto_double_backwards', 'torch.nn._functions.thnn.auto_symbolic', 'torch.autograd._functions', 'torch.autograd._functions.tensor', 'torch.autograd._functions.utils', 'torch.nn._functions.thnn.normalization', 'torch.nn._functions.thnn.fold', 'torch.nn._functions.thnn.sparse', 'torch.nn.parameter', 'torch.nn.modules.linear', 'torch.nn.functional', 'torch.nn._reduction', 'torch._jit_internal', 'typing', 'typing.io', 'typing.re', 'torch.nn.modules.utils', 'torch.nn._functions.vision', 'torch.backends', 'torch.backends.cudnn', 'torch.nn.grad', 'torch.nn._VF', 'torch.nn.init', 'torch.nn.modules.conv', 'torch.nn.modules.activation', 'torch.nn.modules.loss', 'torch.nn.modules.container', 'torch.nn.modules.pooling', 'torch.nn.modules.batchnorm', 'torch.nn.modules.instancenorm', 'torch.nn.modules.normalization', 'torch.nn.modules.dropout', 'torch.nn.modules.padding', 'torch.nn.modules.sparse', 'torch.nn.modules.rnn', 'torch.nn.utils', 'torch.nn.utils.rnn', 'torch.nn.utils.clip_grad', 'torch.nn.utils.weight_norm', 'torch.nn.utils.convert_parameters', 'torch.nn.utils.spectral_norm', 'torch.nn.modules.pixelshuffle', 'torch.nn.modules.upsampling', 'torch.nn.modules.distance', 'torch.nn.modules.fold', 'torch.nn.modules.adaptive', 'torch.nn.parallel', 'torch.nn.parallel.parallel_apply', 'torch.nn.parallel.replicate', 'torch.cuda.comm', 'torch.cuda.nccl', 'torch.nn.parallel.data_parallel', 'torch.nn.parallel.scatter_gather', 'torch.nn.parallel._functions', 'torch.nn.parallel.distributed', 'torch.distributed', 'torch.nn.parallel.distributed_cpu', 'torch.nn.parallel.deprecated', 'torch.nn.parallel.deprecated.distributed', 'torch.distributed.deprecated', 'torch.nn.parallel.deprecated.distributed_cpu', 'torch.optim', 'torch.optim.adadelta', 'torch.optim.optimizer', 'torch.optim.adagrad', 'torch.optim.adam', 'torch.optim.sparse_adam', 'torch.optim.adamax', 'torch.optim.asgd', 'torch.optim.sgd', 'torch.optim.rprop', 'torch.optim.rmsprop', 'torch.optim.lbfgs', 'torch.optim.lr_scheduler', 'torch.multiprocessing', 'torch.multiprocessing.reductions', 'multiprocessing.resource_sharer', 'torch.multiprocessing.spawn', 'multiprocessing.connection', '_multiprocessing', 'torch.utils.backcompat', 'torch.onnx', 'torch.jit', 'torch.jit.frontend', 'torch.jit.annotations', 'torch.distributions', 'torch.distributions.bernoulli', 'torch.distributions.constraints', 'torch.distributions.exp_family', 'torch.distributions.distribution', 'torch.distributions.utils', 'torch.distributions.beta', 'torch.distributions.dirichlet', 'torch.distributions.binomial', 'torch.distributions.categorical', 'torch.distributions.cauchy', 'torch.distributions.chi2', 'torch.distributions.gamma', 'torch.distributions.constraint_registry', 'torch.distributions.transforms', 'torch.distributions.exponential', 'torch.distributions.fishersnedecor', 'torch.distributions.geometric', 'torch.distributions.gumbel', 'torch.distributions.uniform', 'torch.distributions.transformed_distribution', 'torch.distributions.half_cauchy', 'torch.distributions.half_normal', 'torch.distributions.normal', 'torch.distributions.independent', 'torch.distributions.kl', 'torch.distributions.laplace', 'torch.distributions.logistic_normal', 'torch.distributions.lowrank_multivariate_normal', 'torch.distributions.multivariate_normal', 'torch.distributions.one_hot_categorical', 'torch.distributions.pareto', 'torch.distributions.poisson', 'torch.distributions.log_normal', 'torch.distributions.multinomial', 'torch.distributions.negative_binomial', 'torch.distributions.relaxed_bernoulli', 'torch.distributions.relaxed_categorical', 'torch.distributions.studentT', 'torch.distributions.weibull', 'torch.backends.cuda', 'torch.backends.mkl', 'torch._torch_docs', 'torch._tensor_docs', 'torch._storage_docs', 'torch._ops', 'data_processor', 'torch.utils.data', 'torch.utils.data.sampler', 'torch.utils.data.distributed', 'torch.utils.data.dataset', 'torch.utils.data.dataloader', 'sklearn', 'sklearn._config', 'sklearn._distributor_init', 'sklearn.__check_build', 'sklearn.__check_build._check_build', 'sklearn.base', 'sklearn.utils', 'timeit', 'scipy', 'scipy._lib', 'scipy._lib._testutils', 'scipy._lib.deprecation', 'scipy._distributor_init', 'scipy.__config__', 'scipy.version', 'scipy._lib._version', 'scipy._lib.six', 'scipy._lib._ccallback', 'scipy._lib._ccallback_c', 'scipy.fft', 'scipy.fft._basic', 'scipy._lib.uarray', 'scipy._lib._uarray', 'scipy._lib._uarray._backend', 'scipy._lib._uarray._uarray', 'scipy.fft._realtransforms', 'scipy.fft._helper', 'scipy.fft._pocketfft', 'scipy.fft._pocketfft.basic', 'scipy.fft._pocketfft.pypocketfft', 'scipy.fft._pocketfft.helper', 'scipy.fft._pocketfft.realtransforms', 'scipy.fft._backend', 'numpy.dual', 'scipy.sparse', 'scipy.sparse.base', 'scipy._lib._numpy_compat', 'scipy.sparse.sputils', 'scipy.sparse.csr', 'scipy.sparse._sparsetools', 'scipy.sparse.compressed', 'scipy._lib._util', 'scipy.sparse.data', 'scipy.sparse.dia', 'scipy.sparse._index', 'scipy.sparse.csc', 'scipy.sparse.lil', 'scipy.sparse._csparsetools', 'scipy.sparse.dok', 'scipy.sparse.coo', 'scipy.sparse.bsr', 'scipy.sparse.construct', 'scipy.sparse.extract', 'scipy.sparse._matrix_io', 'scipy.sparse.csgraph', 'scipy.sparse.csgraph._laplacian', 'scipy.sparse.csgraph._shortest_path', '_cython_0_29_13', 'scipy.sparse.csgraph._validation', 'scipy.sparse.csgraph._tools', 'scipy.sparse.csgraph._traversal', 'scipy.sparse.csgraph._min_spanning_tree', 'scipy.sparse.csgraph._flow', 'scipy.sparse.csgraph._matching', 'scipy.sparse.csgraph._reordering', 'sklearn.utils.murmurhash', 'sklearn.utils.class_weight', 'sklearn.utils._joblib', 'joblib', 'joblib.memory', 'joblib.hashing', 'joblib._compat', 'joblib.func_inspect', 'joblib.logger', 'joblib.disk', 'joblib._memory_helpers', 'joblib._store_backends', 'json', 'json.decoder', 'json.scanner', '_json', 'json.encoder', 'joblib.backports', 'distutils', 'distutils.version', 'joblib.numpy_pickle', 'joblib.compressor', 'joblib.numpy_pickle_utils', 'joblib.numpy_pickle_compat', 'joblib.parallel', 'joblib._multiprocessing_helpers', 'joblib.format_stack', 'joblib.my_exceptions', 'joblib._parallel_backends', 'joblib.pool', 'joblib._memmapping_reducer', 'mmap', 'uuid', 'ctypes.util', 'ctypes.macholib', 'ctypes.macholib.dyld', 'ctypes.macholib.framework', 'ctypes.macholib.dylib', 'multiprocessing.pool', 'joblib.executor', 'joblib.externals', 'joblib.externals.loky', 'joblib.externals.loky._base', 'concurrent', 'concurrent.futures', 'concurrent.futures._base', 'concurrent.futures.process', 'concurrent.futures.thread', 'joblib.externals.loky.backend', 'joblib.externals.loky.backend.context', 'joblib.externals.loky.backend.process', 'joblib.externals.loky.backend.compat', 'joblib.externals.loky.backend.compat_posix', 'multiprocessing.synchronize', 'joblib.externals.loky.backend.reduction', 'joblib.externals.loky.backend._posix_reduction', 'joblib.externals.cloudpickle', 'joblib.externals.cloudpickle.cloudpickle', 'joblib.externals.loky.reusable_executor', 'joblib.externals.loky.process_executor', 'joblib.externals.loky.backend.queues', 'multiprocessing.queues', 'joblib.externals.loky.backend.utils', 'joblib.externals.loky.cloudpickle_wrapper', 'sklearn.exceptions', 'sklearn.utils.deprecation', 'sklearn.utils.fixes', 'scipy.stats', 'scipy.stats.stats', 'scipy.spatial', 'scipy.spatial.kdtree', 'scipy.spatial.ckdtree', 'scipy.spatial.qhull', 'scipy._lib.messagestream', 'scipy.spatial._spherical_voronoi', 'scipy.spatial._voronoi', 'scipy.spatial._plotutils', 'scipy._lib.decorator', 'scipy.spatial._procrustes', 'scipy.linalg', 'scipy.linalg.linalg_version', 'scipy.linalg.misc', 'scipy.linalg.blas', 'scipy.linalg._fblas', 'scipy.linalg.lapack', 'scipy.linalg._flapack', 'scipy.linalg.basic', 'scipy.linalg.flinalg', 'scipy.linalg._flinalg', 'scipy.linalg.decomp', 'scipy.linalg.decomp_svd', 'scipy.linalg._solve_toeplitz', 'scipy.linalg.decomp_lu', 'scipy.linalg._decomp_ldl', 'scipy.linalg.decomp_cholesky', 'scipy.linalg.decomp_qr', 'scipy.linalg._decomp_qz', 'scipy.linalg.decomp_schur', 'scipy.linalg._decomp_polar', 'scipy.linalg.matfuncs', 'scipy.linalg.special_matrices', 'scipy.linalg._expm_frechet', 'scipy.linalg._matfuncs_sqrtm', 'scipy.linalg._solvers', 'scipy.linalg._procrustes', 'scipy.linalg._decomp_update', 'scipy.linalg.cython_blas', 'scipy.linalg.cython_lapack', 'scipy.linalg._sketches', 'scipy.spatial.distance', 'scipy.spatial._distance_wrap', 'scipy.spatial._hausdorff', 'scipy.special', 'scipy.special.sf_error', 'scipy.special._ufuncs', 'scipy.special._ufuncs_cxx', 'scipy.special._basic', 'scipy.special.specfun', 'scipy.special.orthogonal', 'scipy.special._comb', 'scipy.special._logsumexp', 'scipy.special.spfun_stats', 'scipy.special._ellip_harm', 'scipy.special._ellip_harm_2', 'scipy.special.lambertw', 'scipy.special._spherical_bessel', 'scipy.spatial.transform', 'scipy.spatial.transform.rotation', 'scipy.spatial.transform._rotation_groups', 'scipy.constants', 'scipy.constants.codata', 'scipy.constants.constants', 'scipy.spatial.transform._rotation_spline', 'scipy.ndimage', 'scipy.ndimage.filters', 'scipy.ndimage._ni_support', 'scipy.ndimage._nd_image', 'scipy.ndimage._ni_docstrings', 'scipy._lib.doccer', 'scipy.ndimage.fourier', 'scipy.ndimage.interpolation', 'scipy.ndimage.measurements', 'scipy.ndimage._ni_label', '_ni_label', 'scipy.ndimage.morphology', 'scipy.stats.distributions', 'scipy.stats._distn_infrastructure', 'scipy.stats._distr_params', 'scipy.optimize', 'scipy.optimize.optimize', 'scipy.optimize.linesearch', 'scipy.optimize.minpack2', 'scipy.optimize._minimize', 'scipy.optimize._trustregion_dogleg', 'scipy.optimize._trustregion', 'scipy.optimize._trustregion_ncg', 'scipy.optimize._trustregion_krylov', 'scipy.optimize._trlib', 'scipy.optimize._trlib._trlib', 'scipy.optimize._trustregion_exact', 'scipy.optimize._trustregion_constr', 'scipy.optimize._trustregion_constr.minimize_trustregion_constr', 'scipy.sparse.linalg', 'scipy.sparse.linalg.isolve', 'scipy.sparse.linalg.isolve.iterative', 'scipy.sparse.linalg.isolve._iterative', 'scipy.sparse.linalg.interface', 'scipy.sparse.linalg.isolve.utils', 'scipy._lib._threadsafety', 'scipy.sparse.linalg.isolve.minres', 'scipy.sparse.linalg.isolve.lgmres', 'scipy.sparse.linalg.isolve._gcrotmk', 'scipy.sparse.linalg.isolve.lsqr', 'scipy.sparse.linalg.isolve.lsmr', 'scipy.sparse.linalg.dsolve', 'scipy.sparse.linalg.dsolve.linsolve', 'scipy.sparse.linalg.dsolve._superlu', 'scipy.sparse.linalg.dsolve._add_newdocs', 'scipy.sparse.linalg.eigen', 'scipy.sparse.linalg.eigen.arpack', 'scipy.sparse.linalg.eigen.arpack.arpack', 'scipy.sparse.linalg.eigen.arpack._arpack', 'scipy.sparse.linalg.eigen.lobpcg', 'scipy.sparse.linalg.eigen.lobpcg.lobpcg', 'scipy.sparse.linalg.matfuncs', 'scipy.sparse.linalg._expm_multiply', 'scipy.sparse.linalg._onenormest', 'scipy.sparse.linalg._norm', 'scipy.optimize._differentiable_functions', 'scipy.optimize._numdiff', 'scipy.optimize._group_columns', 'scipy.optimize._hessian_update_strategy', 'scipy.optimize._constraints', 'scipy.optimize._trustregion_constr.equality_constrained_sqp', 'scipy.optimize._trustregion_constr.projections', 'scipy.optimize._trustregion_constr.qp_subproblem', 'scipy.optimize._trustregion_constr.canonical_constraint', 'scipy.optimize._trustregion_constr.tr_interior_point', 'scipy.optimize._trustregion_constr.report', 'scipy.optimize.lbfgsb', 'scipy.optimize._lbfgsb', 'scipy.optimize.tnc', 'scipy.optimize.moduleTNC', 'scipy.optimize.cobyla', 'scipy.optimize._cobyla', 'scipy.optimize.slsqp', 'scipy.optimize._slsqp', 'scipy.optimize._root', 'scipy.optimize.minpack', 'scipy.optimize._minpack', 'scipy.optimize._lsq', 'scipy.optimize._lsq.least_squares', 'scipy.optimize._lsq.trf', 'scipy.optimize._lsq.common', 'scipy.optimize._lsq.dogbox', 'scipy.optimize._lsq.lsq_linear', 'scipy.optimize._lsq.trf_linear', 'scipy.optimize._lsq.givens_elimination', 'scipy.optimize._lsq.bvls', 'scipy.optimize._spectral', 'scipy.optimize.nonlin', 'scipy.optimize._root_scalar', 'scipy.optimize.zeros', 'scipy.optimize._zeros', 'scipy.optimize.nnls', 'scipy.optimize._nnls', 'scipy.optimize._basinhopping', 'scipy.optimize._linprog', 'scipy.optimize._linprog_ip', 'scipy.optimize._linprog_util', 'scipy.optimize._remove_redundancy', 'scipy.optimize._linprog_simplex', 'scipy.optimize._linprog_rs', 'scipy.optimize._bglu_dense', 'scipy.optimize._lsap', 'scipy.optimize._lsap_module', 'scipy.optimize._differentialevolution', 'scipy.optimize._shgo', 'scipy.optimize._shgo_lib', 'scipy.optimize._shgo_lib.sobol_seq', 'scipy.optimize._shgo_lib.triangulation', 'scipy.optimize._dual_annealing', 'scipy.integrate', 'scipy.integrate.quadrature', 'scipy.integrate.odepack', 'scipy.integrate._odepack', 'scipy.integrate.quadpack', 'scipy.integrate._quadpack', 'scipy.integrate._ode', 'scipy.integrate.vode', 'scipy.integrate._dop', 'scipy.integrate.lsoda', 'scipy.integrate._bvp', 'scipy.integrate._ivp', 'scipy.integrate._ivp.ivp', 'scipy.integrate._ivp.bdf', 'scipy.integrate._ivp.common', 'scipy.integrate._ivp.base', 'scipy.integrate._ivp.radau', 'scipy.integrate._ivp.rk', 'scipy.integrate._ivp.dop853_coefficients', 'scipy.integrate._ivp.lsoda', 'scipy.integrate._quad_vec', 'scipy.misc', 'scipy.misc.doccer', 'scipy.misc.common', 'scipy.stats._constants', 'scipy.stats._continuous_distns', 'scipy.interpolate', 'scipy.interpolate.interpolate', 'scipy.interpolate.fitpack', 'scipy.interpolate._fitpack_impl', 'scipy.interpolate._fitpack', 'scipy.interpolate.dfitpack', 'scipy.interpolate._bsplines', 'scipy.interpolate._bspl', 'scipy.interpolate.polyint', 'scipy.interpolate._ppoly', 'scipy.interpolate.fitpack2', 'scipy.interpolate.interpnd', 'scipy.interpolate.rbf', 'scipy.interpolate._cubic', 'scipy.interpolate.ndgriddata', 'scipy.interpolate._pade', 'scipy.stats._stats', 'scipy.stats._tukeylambda_stats', 'scipy.stats._discrete_distns', 'scipy.stats.mstats_basic', 'scipy.stats._stats_mstats_common', 'scipy.stats._rvs_sampling', 'scipy.stats._hypotests', 'scipy.stats.morestats', 'scipy.stats.statlib', 'scipy.stats.contingency', 'scipy.stats._binned_statistic', 'scipy.stats.kde', 'scipy.stats.mvn', 'scipy.stats.mstats', 'scipy.stats.mstats_extras', 'scipy.stats._multivariate', 'sklearn.externals', 'sklearn.externals._scipy_linalg', 'sklearn.utils.validation', 'sklearn.utils._show_versions', 'sklearn.utils._openmp_helpers', 'sklearn.model_selection', 'sklearn.model_selection._split', 'sklearn.utils.multiclass', 'sklearn.model_selection._validation', 'sklearn.utils.metaestimators', 'sklearn.metrics', 'sklearn.metrics._ranking', 'sklearn.utils.extmath', 'sklearn.utils._logistic_sigmoid', 'sklearn.utils.sparsefuncs_fast', '_cython_0_29_14', 'sklearn.utils.sparsefuncs', 'sklearn.preprocessing', 'sklearn.preprocessing._function_transformer', 'sklearn.preprocessing._data', 'sklearn.preprocessing._csr_polynomial_expansion', 'sklearn.preprocessing._encoders', 'sklearn.preprocessing._label', 'sklearn.preprocessing._discretization', 'sklearn.metrics._base', 'sklearn.metrics._classification', 'sklearn.metrics.cluster', 'sklearn.metrics.cluster._supervised', 'sklearn.metrics.cluster._expected_mutual_info_fast', 'sklearn.metrics.cluster._unsupervised', 'sklearn.metrics.pairwise', 'sklearn.utils._mask', 'sklearn.metrics._pairwise_fast', 'sklearn.metrics.cluster._bicluster', 'sklearn.metrics._regression', 'sklearn.metrics._scorer', 'sklearn.metrics._plot', 'sklearn.metrics._plot.roc_curve', 'sklearn.metrics._plot.base', 'sklearn.metrics._plot.precision_recall_curve', 'sklearn.metrics._plot.confusion_matrix', 'sklearn.model_selection._search', 'sklearn.utils.random', 'sklearn.utils._random', 'pymysql', 'pymysql._compat', 'pymysql.constants', 'pymysql.constants.FIELD_TYPE', 'pymysql.converters', 'pymysql.constants.FLAG', 'pymysql.charset', 'pymysql.err', 'pymysql.constants.ER', 'pymysql.times', 'pymysql.connections', 'pymysql._auth', 'pymysql.constants.CLIENT', 'cryptography', 'cryptography.__about__', 'cryptography.hazmat', 'cryptography.hazmat.backends', 'cryptography.hazmat.primitives', 'cryptography.hazmat.primitives.serialization', 'cryptography.hazmat.primitives._serialization', 'cryptography.hazmat.primitives.serialization.base', 'cryptography.hazmat._types', 'cryptography.hazmat.primitives.asymmetric', 'cryptography.hazmat.primitives.asymmetric.dsa', 'cryptography.utils', 'cryptography.hazmat.primitives.hashes', 'cryptography.exceptions', 'cryptography.hazmat.backends.interfaces', 'cryptography.hazmat.primitives.asymmetric.utils', 'cryptography.hazmat._der', 'cryptography.hazmat.primitives.asymmetric.ec', 'cryptography.hazmat._oid', 'cryptography.hazmat.primitives.asymmetric.ed25519', 'cryptography.hazmat.primitives.asymmetric.ed448', 'cryptography.hazmat.primitives.asymmetric.rsa', 'cryptography.hazmat.primitives._asymmetric', 'cryptography.hazmat.primitives.asymmetric.dh', 'cryptography.hazmat.primitives.serialization.ssh', 'cryptography.hazmat.primitives.ciphers', 'cryptography.hazmat.primitives.ciphers.base', 'cryptography.hazmat.primitives._cipheralgorithm', 'cryptography.hazmat.primitives.ciphers.modes', 'cryptography.hazmat.primitives.ciphers.algorithms', 'cryptography.hazmat.primitives.asymmetric.padding', 'pymysql.constants.COMMAND', 'pymysql.constants.CR', 'pymysql.constants.SERVER_STATUS', 'pymysql.cursors', 'pymysql.optionfile', 'pymysql.protocol', 'pymysql.util', 'ssl', 'ipaddress', '_ssl', 'getpass', 'termios', 'classifyer', 'xlrd', 'xlrd.info', 'xlrd.timemachine', 'xlrd.biffh', 'xlrd.formula', 'xlrd.book', 'xlrd.sheet', 'xlrd.formatting', 'xlrd.compdoc', 'xlrd.xldate', 'xlrd.xlsx', 'character_processor', 'pyltp', 'bilstm_attention', 'nlpcda', 'nlpcda.tools', 'nlpcda.tools.Homophone', 'nlpcda.tools.Basetool', 'nlpcda.config', 'jieba', 'jieba.finalseg', 'jieba._compat', 'pkg_resources', 'plistlib', 'xml', 'xml.parsers', 'xml.parsers.expat', 'pyexpat.errors', 'pyexpat.model', 'pyexpat', 'xml.parsers.expat.model', 'xml.parsers.expat.errors', 'email', 'email.parser', 'email.feedparser', 'email.errors', 'email._policybase', 'email.header', 'email.quoprimime', 'email.base64mime', 'email.charset', 'email.encoders', 'quopri', 'email.utils', 'email._parseaddr', 'calendar', 'pkg_resources.extern', 'pkg_resources._vendor', 'pkg_resources._vendor.appdirs', 'pkg_resources.extern.appdirs', 'pkg_resources._vendor.packaging', 'pkg_resources._vendor.packaging.__about__', 'pkg_resources.extern.packaging', 'pkg_resources.extern.packaging.version', 'pkg_resources.extern.packaging._structures', 'pkg_resources.extern.packaging._typing', 'pkg_resources.extern.packaging.specifiers', 'pkg_resources.extern.packaging._compat', 'pkg_resources.extern.packaging.utils', 'pkg_resources.extern.packaging.requirements', 'pkg_resources._vendor.pyparsing', 'pkg_resources.extern.pyparsing', 'pkg_resources.extern.packaging.markers', 'jieba.finalseg.prob_start', 'jieba.finalseg.prob_trans', 'jieba.finalseg.prob_emit', 'nlpcda.tools.Ner', 'nlpcda.tools.Random_delete_char', 'nlpcda.tools.Random_word', 'nlpcda.tools.Similar_word', 'nlpcda.tools.Char_position_exchange', 'nlpcda.tools.Translate', 'requests', 'urllib3', 'urllib3.connectionpool', 'urllib3.exceptions', 'urllib3.packages', 'urllib3.packages.ssl_match_hostname', 'urllib3.packages.six', 'urllib3.packages.six.moves', 'http', 'http.client', 'email.message', 'uu', 'email._encoded_words', 'email.iterators', 'urllib3.packages.six.moves.http_client', 'urllib3.connection', 'urllib3.util', 'urllib3.util.connection', 'urllib3.util.wait', 'urllib3.contrib', 'urllib3.contrib._appengine_environ', 'urllib3.util.request', 'urllib3.util.response', 'urllib3.util.ssl_', 'urllib3.util.url', 'urllib3.util.timeout', 'urllib3.util.retry', 'urllib3._collections', 'urllib3.request', 'urllib3.filepost', 'urllib3.fields', 'mimetypes', 'urllib3.packages.six.moves.urllib', 'urllib3.packages.six.moves.urllib.parse', 'urllib3.response', 'urllib3.util.queue', 'urllib3.poolmanager', 'chardet', 'chardet.compat', 'chardet.universaldetector', 'chardet.charsetgroupprober', 'chardet.enums', 'chardet.charsetprober', 'chardet.escprober', 'chardet.codingstatemachine', 'chardet.escsm', 'chardet.latin1prober', 'chardet.mbcsgroupprober', 'chardet.utf8prober', 'chardet.mbcssm', 'chardet.sjisprober', 'chardet.mbcharsetprober', 'chardet.chardistribution', 'chardet.euctwfreq', 'chardet.euckrfreq', 'chardet.gb2312freq', 'chardet.big5freq', 'chardet.jisfreq', 'chardet.jpcntx', 'chardet.eucjpprober', 'chardet.gb2312prober', 'chardet.euckrprober', 'chardet.cp949prober', 'chardet.big5prober', 'chardet.euctwprober', 'chardet.sbcsgroupprober', 'chardet.sbcharsetprober', 'chardet.langcyrillicmodel', 'chardet.langgreekmodel', 'chardet.langbulgarianmodel', 'chardet.langthaimodel', 'chardet.langhebrewmodel', 'chardet.hebrewprober', 'chardet.langturkishmodel', 'chardet.version', 'requests.exceptions', 'urllib3.contrib.pyopenssl', 'OpenSSL', 'OpenSSL.crypto', 'six', 'cryptography.x509', 'cryptography.x509.certificate_transparency', 'cryptography.x509.base', 'cryptography.x509.extensions', 'cryptography.hazmat.primitives.constant_time', 'cryptography.x509.general_name', 'cryptography.x509.name', 'cryptography.x509.oid', 'OpenSSL._util', 'cryptography.hazmat.bindings', 'cryptography.hazmat.bindings.openssl', 'cryptography.hazmat.bindings.openssl.binding', '_cffi_backend', '_openssl.lib', '_openssl', 'cryptography.hazmat.bindings._openssl', 'cryptography.hazmat.bindings.openssl._conditional', 'OpenSSL.SSL', 'OpenSSL.version', 'cryptography.hazmat.backends.openssl', 'cryptography.hazmat.backends.openssl.backend', 'cryptography.hazmat.backends.openssl.aead', 'cryptography.hazmat.backends.openssl.ciphers', 'cryptography.hazmat.backends.openssl.cmac', 'cryptography.hazmat.backends.openssl.decode_asn1', 'cryptography.hazmat.backends.openssl.dh', 'cryptography.hazmat.backends.openssl.dsa', 'cryptography.hazmat.backends.openssl.utils', 'cryptography.hazmat.backends.openssl.ec', 'cryptography.hazmat.backends.openssl.ed25519', 'cryptography.hazmat.backends.openssl.ed448', 'cryptography.hazmat.backends.openssl.encode_asn1', 'cryptography.hazmat.backends.openssl.hashes', 'cryptography.hazmat.backends.openssl.hmac', 'cryptography.hazmat.backends.openssl.ocsp', 'cryptography.hazmat.backends.openssl.x509', 'cryptography.hazmat.backends.openssl.rsa', 'cryptography.x509.ocsp', 'cryptography.hazmat.backends.openssl.poly1305', 'cryptography.hazmat.backends.openssl.x25519', 'cryptography.hazmat.primitives.asymmetric.x25519', 'cryptography.hazmat.backends.openssl.x448', 'cryptography.hazmat.primitives.asymmetric.x448', 'cryptography.hazmat.primitives.kdf', 'cryptography.hazmat.primitives.kdf.scrypt', 'cryptography.hazmat.primitives.serialization.pkcs7', 'urllib3.packages.backports', 'urllib3.packages.backports.makefile', 'requests.__version__', 'requests.utils', 'requests.certs', 'certifi', 'certifi.core', 'requests._internal_utils', 'requests.compat', 'urllib.request', 'urllib.error', 'urllib.response', '_scproxy', 'http.cookiejar', 'http.cookies', 'requests.cookies', 'requests.structures', 'requests.packages', 'requests.packages.urllib3', 'requests.packages.urllib3.connectionpool', 'requests.packages.urllib3.exceptions', 'requests.packages.urllib3.packages', 'requests.packages.urllib3.packages.ssl_match_hostname', 'requests.packages.urllib3.packages.six', 'requests.packages.urllib3.packages.six.moves', 'requests.packages.urllib3.packages.six.moves.http_client', 'requests.packages.urllib3.connection', 'requests.packages.urllib3.util', 'requests.packages.urllib3.util.connection', 'requests.packages.urllib3.util.wait', 'requests.packages.urllib3.contrib', 'requests.packages.urllib3.contrib._appengine_environ', 'requests.packages.urllib3.util.request', 'requests.packages.urllib3.util.response', 'requests.packages.urllib3.util.ssl_', 'requests.packages.urllib3.util.url', 'requests.packages.urllib3.util.timeout', 'requests.packages.urllib3.util.retry', 'requests.packages.urllib3._collections', 'requests.packages.urllib3.request', 'requests.packages.urllib3.filepost', 'requests.packages.urllib3.fields', 'requests.packages.urllib3.packages.six.moves.urllib', 'requests.packages.urllib3.packages.six.moves.urllib.parse', 'requests.packages.urllib3.response', 'requests.packages.urllib3.util.queue', 'requests.packages.urllib3.poolmanager', 'requests.packages.urllib3.contrib.pyopenssl', 'requests.packages.urllib3.packages.backports', 'requests.packages.urllib3.packages.backports.makefile', 'idna', 'idna.package_data', 'idna.core', 'idna.idnadata', 'unicodedata', 'idna.intranges', 'requests.packages.idna', 'requests.packages.idna.package_data', 'requests.packages.idna.core', 'requests.packages.idna.idnadata', 'requests.packages.idna.intranges', 'requests.packages.chardet', 'requests.packages.chardet.compat', 'requests.packages.chardet.universaldetector', 'requests.packages.chardet.charsetgroupprober', 'requests.packages.chardet.enums', 'requests.packages.chardet.charsetprober', 'requests.packages.chardet.escprober', 'requests.packages.chardet.codingstatemachine', 'requests.packages.chardet.escsm', 'requests.packages.chardet.latin1prober', 'requests.packages.chardet.mbcsgroupprober', 'requests.packages.chardet.utf8prober', 'requests.packages.chardet.mbcssm', 'requests.packages.chardet.sjisprober', 'requests.packages.chardet.mbcharsetprober', 'requests.packages.chardet.chardistribution', 'requests.packages.chardet.euctwfreq', 'requests.packages.chardet.euckrfreq', 'requests.packages.chardet.gb2312freq', 'requests.packages.chardet.big5freq', 'requests.packages.chardet.jisfreq', 'requests.packages.chardet.jpcntx', 'requests.packages.chardet.eucjpprober', 'requests.packages.chardet.gb2312prober', 'requests.packages.chardet.euckrprober', 'requests.packages.chardet.cp949prober', 'requests.packages.chardet.big5prober', 'requests.packages.chardet.euctwprober', 'requests.packages.chardet.sbcsgroupprober', 'requests.packages.chardet.sbcharsetprober', 'requests.packages.chardet.langcyrillicmodel', 'requests.packages.chardet.langgreekmodel', 'requests.packages.chardet.langbulgarianmodel', 'requests.packages.chardet.langthaimodel', 'requests.packages.chardet.langhebrewmodel', 'requests.packages.chardet.hebrewprober', 'requests.packages.chardet.langturkishmodel', 'requests.packages.chardet.version', 'requests.models', 'encodings.idna', 'stringprep', 'requests.hooks', 'requests.auth', 'requests.status_codes', 'requests.api', 'requests.sessions', 'requests.adapters', 'nlpcda.tools.Equivalent_char', 'nlpcda.tools.Simbert', 'nlpcda.tools.simbert', 'nlpcda.tools.simbert.generator', 'bert4keras', 'bert4keras.backend', 'distutils.util', 'distutils.errors', 'distutils.dep_util', 'distutils.spawn', 'distutils.debug', 'distutils.log', 'distutils.sysconfig', 'tensorflow', 'tensorflow._api', 'tensorflow.python', 'tensorflow.tools', 'tensorflow.core', 'tensorflow.compiler', 'tensorflow.lite', 'tensorflow.keras', 'tensorflow.compat', 'tensorflow.summary', 'tensorflow.examples', 'tensorflow.estimator', 'tensorflow_core', 'tensorflow_core.python', 'tensorflow_core.python.pywrap_tensorflow', 'tensorflow.python.platform', 'tensorflow.python.platform.self_check', 'tensorflow.python.platform.build_info', 'tensorflow.python.pywrap_tensorflow_internal', 'imp', 'swig_runtime_data4', '_pywrap_tensorflow_internal', 'tensorflow_core.python._pywrap_utils', 'tensorflow_core.python._pywrap_tfprof', 'tensorflow_core.python._pywrap_events_writer', 'tensorflow_core.python._pywrap_util_port', 'tensorflow_core.python._pywrap_stat_summarizer', 'tensorflow_core.python._pywrap_py_exception_registry', 'tensorflow_core.python._pywrap_kernel_registry', 'tensorflow_core.python._pywrap_quantize_training', 'tensorflow_core.python._pywrap_scoped_annotation', 'tensorflow_core.python._pywrap_transform_graph', 'tensorflow_core.python._pywrap_traceme', 'tensorflow_core.python._pywrap_stacktrace_handler', 'tensorflow_core.core', 'tensorflow.core.framework', 'tensorflow.core.framework.graph_pb2', 'google.protobuf', 'google.protobuf.descriptor', 'google.protobuf.internal', 'google.protobuf.internal.api_implementation', 'google.protobuf.internal._api_implementation', 'google.protobuf.pyext', 'google.protobuf.internal.containers', 'google.protobuf.internal.enum_type_wrapper', 'google.protobuf.message', 'google.protobuf.pyext._message', 'google.protobuf.reflection', 'google.protobuf.message_factory', 'google.protobuf.descriptor_pool', 'google.protobuf.descriptor_database', 'google.protobuf.text_encoding', 'google.protobuf.pyext.cpp_message', 'google.protobuf.symbol_database', 'tensorflow.core.framework.node_def_pb2', 'tensorflow.core.framework.attr_value_pb2', 'tensorflow.core.framework.tensor_pb2', 'tensorflow.core.framework.resource_handle_pb2', 'tensorflow.core.framework.tensor_shape_pb2', 'google.protobuf.internal.well_known_types', 'tensorflow.core.framework.types_pb2', 'tensorflow.core.framework.function_pb2', 'tensorflow.core.framework.op_def_pb2', 'tensorflow.core.framework.versions_pb2', 'tensorflow.core.framework.summary_pb2', 'tensorflow.core.protobuf', 'tensorflow.core.protobuf.meta_graph_pb2', 'google.protobuf.any_pb2', 'tensorflow.core.protobuf.saved_object_graph_pb2', 'tensorflow.core.protobuf.trackable_object_graph_pb2', 'tensorflow.core.protobuf.struct_pb2', 'tensorflow.core.framework.variable_pb2', 'tensorflow.core.protobuf.saver_pb2', 'tensorflow.core.protobuf.config_pb2', 'tensorflow.core.framework.cost_graph_pb2', 'tensorflow.core.framework.step_stats_pb2', 'tensorflow.core.framework.allocation_description_pb2', 'tensorflow.core.framework.tensor_description_pb2', 'tensorflow.core.protobuf.cluster_pb2', 'tensorflow.core.protobuf.debug_pb2', 'tensorflow.core.protobuf.rewriter_config_pb2', 'tensorflow.core.protobuf.verifier_config_pb2', 'tensorflow.core.protobuf.tensorflow_server_pb2', 'tensorflow.core.util', 'tensorflow.core.util.event_pb2', 'tensorflow.python.framework', 'tensorflow.python.framework.framework_lib', 'tensorflow.python.framework.device', 'tensorflow_core.python.tf2', 'tensorflow.python.framework.device_spec', 'tensorflow.python.util', 'tensorflow.python.util.tf_export', 'tensorflow.python.util.tf_decorator', 'tensorflow.python.util.tf_stack', 'tensorflow_core.python._tf_stack', 'tensorflow.python.util.tf_inspect', 'tensorflow.python.framework.ops', 'six.moves', 'tensorflow.python.eager', 'tensorflow.python.eager.context', 'absl', 'absl.logging', 'absl.flags', 'getopt', 'absl.flags._argument_parser', 'csv', '_csv', 'absl.flags._helpers', 'fcntl', 'absl.flags._defines', 'absl.flags._exceptions', 'absl.flags._flag', 'absl._collections_abc', 'absl.flags._flagvalues', 'xml.dom', 'xml.dom.domreg', 'xml.dom.minidom', 'xml.dom.minicompat', 'xml.dom.xmlbuilder', 'xml.dom.NodeFilter', 'absl.flags._validators', 'absl.logging.converter', 'tensorflow.python.eager.executor', 'tensorflow.python.eager.monitoring', 'tensorflow.python.framework.c_api_util', 'tensorflow.core.framework.api_def_pb2', 'tensorflow.python.util.compat', 'tensorflow.python.util.tf_contextlib', 'tensorflow.python.util.is_in_graph_mode', 'tensorflow.python.eager.core', 'tensorflow.python.framework.errors', 'tensorflow.python.framework.errors_impl', 'tensorflow.core.lib', 'tensorflow.core.lib.core', 'tensorflow.core.lib.core.error_codes_pb2', 'tensorflow.core.protobuf.error_codes_pb2', 'tensorflow.python.framework.error_interpolation', 'tensorflow.core.protobuf.graph_debug_info_pb2', 'tensorflow.python.util.deprecation', 'tensorflow.python.platform.tf_logging', 'tensorflow.python.util.decorator_utils', 'tensorflow.python.eager.tape', 'tensorflow.python.util.lazy_loader', 'tensorflow.python.framework.composite_tensor', 'tensorflow.python.util.nest', 'wrapt', 'wrapt.wrappers', 'wrapt._wrappers', 'wrapt.decorators', 'wrapt.importer', 'tensorflow.python.framework.dtypes', 'tensorflow.python.framework.indexed_slices', 'tensorflow.python.framework.tensor_conversion_registry', 'tensorflow.python.framework.tensor_like', 'tensorflow.python.framework.tensor_shape', 'tensorflow.python.framework.type_spec', 'tensorflow.python.framework.registry', 'tensorflow.python.framework.traceable_stack', 'tensorflow.python.framework.versions', 'tensorflow.python.ops', 'tensorflow.python.ops.control_flow_util', 'tensorflow.python.platform.app', 'absl.app', 'pdb', 'cmd', 'code', 'codeop', 'absl.command_name', 'faulthandler', 'tensorflow.python.platform.flags', 'tensorflow.python.util.function_utils', 'tensorflow.python.util.lock_util', 'tensorflow.python.util.memory', 'tensorflow.python.util.object_identity', 'tensorflow_core.tools', 'tensorflow.tools.docs', 'tensorflow.tools.docs.doc_controls', 'tensorflow.python.framework.sparse_tensor', 'tensorflow.python.framework.constant_op', 'tensorflow.python.eager.execute', 'google.protobuf.text_format', 'encodings.raw_unicode_escape', 'encodings.unicode_escape', 'google.protobuf.internal.decoder', 'google.protobuf.internal.encoder', 'google.protobuf.internal.wire_format', 'google.protobuf.internal.type_checkers', 'tensorflow.python.framework.tensor_util', 'tensorflow.python.framework.fast_tensor_util', 'tensorflow.python.framework.tensor_spec', 'tensorflow.python.framework.common_shapes', 'tensorflow.python.ops.gen_sparse_ops', 'tensorflow.python.framework.op_def_registry', 'tensorflow_core.python._op_def_registry', 'tensorflow.python.framework.op_def_library', 'tensorflow.python.framework.op_callbacks', 'tensorflow.python.util.dispatch', 'tensorflow.python.framework.random_seed', 'tensorflow.python.framework.importer', 'tensorflow.python.framework.function', 'tensorflow.python.framework.graph_to_function_def', 'tensorflow.python.ops.array_ops', 'tensorflow.python.compat', 'tensorflow.python.compat.compat', 'tensorflow.python.ops.gen_array_ops', 'tensorflow.python.ops.gen_math_ops', 'tensorflow.python.ops.resource_variable_ops', 'tensorflow.python.framework.cpp_shape_inference_pb2', 'tensorflow.python.ops.gen_logging_ops', 'tensorflow.python.ops.gen_resource_variable_ops', 'tensorflow.python.ops.gen_state_ops', 'tensorflow.python.ops.math_ops', 'tensorflow.python.framework.graph_util', 'tensorflow.python.framework.graph_util_impl', 'tensorflow.python.ops.gen_data_flow_ops', 'tensorflow.python.ops.gen_nn_ops', 'tensorflow.python.ops.state_ops', 'tensorflow.python.ops.variables', 'tensorflow.python.ops.control_flow_ops', 'tensorflow.core.protobuf.control_flow_pb2', 'tensorflow.python.ops.gen_control_flow_ops', 'tensorflow.python.ops.tensor_array_ops', 'tensorflow.python.ops.list_ops', 'tensorflow.python.ops.gen_list_ops', 'tensorflow.python.util.tf_should_use', 'tensorflow.python.training', 'tensorflow.python.training.tracking', 'tensorflow.python.training.tracking.base', 'tensorflow.python.ops.gen_io_ops', 'tensorflow.python.training.saving', 'tensorflow.python.training.saving.saveable_object', 'tensorflow.python.ops.variable_scope', 'tensorflow.python.client', 'tensorflow.python.client.session', 'tensorflow.python.ops.session_ops', 'tensorflow.python.training.experimental', 'tensorflow.python.training.experimental.mixed_precision_global_state', 'tensorflow.python.ops.init_ops', 'tensorflow.python.ops.gen_linalg_ops', 'tensorflow.python.ops.linalg_ops_impl', 'tensorflow.python.ops.random_ops', 'tensorflow.python.ops.gen_random_ops', 'tensorflow.python.framework.load_library', 'tensorflow.python.lib', 'tensorflow.python.lib.io', 'tensorflow.python.lib.io.file_io', 'tensorflow.python.framework.config', 'tensorflow.python.client.client_lib', 'tensorflow.python.ops.standard_ops', 'tensorflow_core.python.autograph', 'tensorflow.python.autograph', 'tensorflow.python.autograph.operators', 'tensorflow.python.autograph.operators.control_flow', 'tensorflow.python.autograph.operators.py_builtins', 'tensorflow.python.autograph.utils', 'tensorflow.python.autograph.utils.context_managers', 'tensorflow.python.autograph.utils.misc', 'tensorflow.python.autograph.utils.py_func', 'tensorflow.python.ops.script_ops', 'tensorflow_core.python._pywrap_py_func', 'tensorflow.python.eager.backprop', 'tensorflow.python.eager.backprop_util', 'tensorflow.python.eager.imperative_grad', 'tensorflow.python.ops.unconnected_gradients', 'tensorflow.python.ops.check_ops', 'tensorflow.python.ops.default_gradient', 'tensorflow.python.framework.func_graph', 'tensorflow.python.eager.graph_only_ops', 'tensorflow.python.framework.auto_control_deps', 'tensorflow.python.ops.custom_gradient', 'tensorflow.python.ops.op_selector', 'tensorflow.python.ops.gen_script_ops', 'tensorflow.python.autograph.utils.tensor_list', 'tensorflow.python.autograph.utils.testing', 'tensorflow.python.autograph.utils.type_check', 'tensorflow.python.autograph.utils.tensors', 'tensorflow.python.data', 'tensorflow.python.data.experimental', 'tensorflow.python.data.experimental.ops', 'tensorflow.python.data.experimental.ops.batching', 'tensorflow.python.data.ops', 'tensorflow.python.data.ops.dataset_ops', 'tensorflow.python.data.experimental.ops.distribute_options', 'tensorflow.python.data.util', 'tensorflow.python.data.util.options', 'tensorflow.python.data.experimental.ops.optimization_options', 'tensorflow.python.data.experimental.ops.stats_options', 'tensorflow.python.data.experimental.ops.stats_aggregator', 'tensorflow.python.ops.gen_experimental_dataset_ops', 'tensorflow.python.ops.summary_ops_v2', 'tensorflow.python.eager.profiler', 'tensorflow.python.platform.gfile', 'tensorflow.python.framework.smart_cond', 'tensorflow.python.ops.gen_summary_ops', 'tensorflow.python.ops.summary_op_util', 'tensorflow.python.training.training_util', 'tensorflow.python.framework.graph_io', 'tensorflow.python.data.experimental.ops.threading_options', 'tensorflow.python.data.ops.iterator_ops', 'tensorflow.python.data.ops.optional_ops', 'tensorflow.python.data.util.structure', 'tensorflow.python.data.util.nest', 'tensorflow.python.ops.ragged', 'tensorflow.python.ops.ragged.ragged_array_ops', 'tensorflow.python.ops.sort_ops', 'tensorflow.python.ops.nn_ops', 'tensorflow.python.ops.ragged.ragged_functional_ops', 'tensorflow.python.ops.ragged.ragged_config', 'tensorflow.python.ops.ragged.ragged_tensor', 'tensorflow.python.ops.gen_ragged_conversion_ops', 'tensorflow.python.ops.ragged.ragged_tensor_value', 'tensorflow.python.ops.ragged.ragged_util', 'tensorflow.python.ops.gen_ragged_math_ops', 'tensorflow.python.ops.ragged.segment_id_ops', 'tensorflow.python.ops.ragged.ragged_math_ops', 'tensorflow.python.ops.ragged.ragged_batch_gather_ops', 'tensorflow.python.ops.ragged.ragged_gather_ops', 'tensorflow.python.ops.gen_ragged_array_ops', 'tensorflow.python.ops.ragged.ragged_batch_gather_with_default_op', 'tensorflow.python.ops.ragged.ragged_dispatch', 'tensorflow.python.ops.clip_ops', 'tensorflow.python.ops.data_flow_ops', 'tensorflow.python.lib.io.python_io', 'tensorflow.python.lib.io.tf_record', 'tensorflow.python.ops.gen_bitwise_ops', 'tensorflow.python.ops.parsing_ops', 'tensorflow.python.ops.gen_parsing_ops', 'tensorflow.python.ops.parsing_config', 'tensorflow.python.ops.sparse_ops', 'tensorflow.python.ops.string_ops', 'tensorflow.python.ops.gen_string_ops', 'tensorflow.python.ops.ragged.ragged_concat_ops', 'tensorflow.python.ops.ragged.ragged_squeeze_op', 'tensorflow.python.ops.ragged.ragged_string_ops', 'tensorflow.python.ops.ragged.ragged_tensor_shape', 'tensorflow.python.ops.ragged.ragged_where_op', 'tensorflow.python.ops.ragged.ragged_operators', 'tensorflow.python.ops.ragged.ragged_getitem', 'tensorflow.python.ops.ragged.ragged_conversion_ops', 'tensorflow.python.ops.ragged.ragged_factory_ops', 'tensorflow.python.ops.ragged.ragged_map_ops', 'tensorflow.python.ops.gen_dataset_ops', 'tensorflow.python.training.saver', 'tensorflow.python.framework.meta_graph', 'tensorflow.python.ops.io_ops', 'tensorflow.python.training.checkpoint_management', 'tensorflow.python.training.checkpoint_state_pb2', 'tensorflow.python.training.py_checkpoint_reader', 'tensorflow.python._pywrap_checkpoint_reader', 'tensorflow.python.training.saving.saveable_object_util', 'tensorflow.python.data.util.random_seed', 'tensorflow.python.data.util.sparse', 'tensorflow.python.data.util.traverse', 'tensorflow.python.eager.function', 'tensorflow.python.eager.forwardprop_util', 'tensorflow.python.ops.functional_ops', 'tensorflow.python.ops.gen_functional_ops', 'tensorflow.python.ops.gradients_util', 'tensorflow.python.ops.control_flow_state', 'tensorflow.python.training.tracking.tracking', 'tensorflow.python.eager.def_function', 'tensorflow.python.eager.lift_to_graph', 'tensorflow.python.training.tracking.data_structures', 'tensorflow.python.saved_model', 'tensorflow.python.saved_model.revived_types', 'tensorflow.python.training.tracking.layer_utils', 'tensorflow.python.data.util.convert', 'tensorflow.python.data.experimental.ops.cardinality', 'tensorflow.python.data.experimental.ops.counter', 'tensorflow.python.data.experimental.ops.scan_ops', 'tensorflow.python.data.experimental.ops.enumerate_ops', 'tensorflow.python.data.experimental.ops.error_ops', 'tensorflow.python.data.experimental.ops.get_single_element', 'tensorflow.python.data.experimental.ops.grouping', 'tensorflow.python.data.experimental.ops.interleave_ops', 'tensorflow.python.data.experimental.ops.random_ops', 'tensorflow.python.data.ops.readers', 'tensorflow.python.ops.gen_stateless_random_ops', 'tensorflow.python.data.experimental.ops.iterator_ops', 'tensorflow.python.training.basic_session_run_hooks', 'tensorflow.python.client.timeline', 'tensorflow.python.training.session_run_hook', 'tensorflow.python.training.summary_io', 'tensorflow.python.summary', 'tensorflow.python.summary.summary_iterator', 'tensorflow.python.summary.writer', 'tensorflow.python.summary.writer.writer', 'tensorflow.python.summary.plugin_asset', 'tensorflow.python.summary.writer.event_file_writer', 'tensorflow.python.summary.writer.event_file_writer_v2', 'tensorflow.python.summary.writer.writer_cache', 'tensorflow.python.data.experimental.ops.parsing_ops', 'tensorflow.python.data.experimental.ops.prefetching_ops', 'tensorflow.python.data.experimental.ops.readers', 'gzip', 'tensorflow.python.data.experimental.ops.resampling', 'tensorflow.python.ops.logging_ops', 'tensorflow.python.data.experimental.ops.shuffle_ops', 'tensorflow.python.data.experimental.ops.stats_ops', 'tensorflow.python.data.experimental.ops.take_while_ops', 'tensorflow.python.data.experimental.ops.unique', 'tensorflow.python.data.experimental.ops.writers', 'tensorflow.python.util.all_util', 'tensorflow.python.autograph.operators.special_values', 'tensorflow.python.autograph.utils.ag_logging', 'tensorflow.python.autograph.operators.data_structures', 'tensorflow.python.autograph.operators.exceptions', 'tensorflow.python.autograph.operators.logical', 'tensorflow.python.autograph.operators.slices', 'tensorflow.python.autograph.core', 'tensorflow.python.autograph.core.converter', 'tensorflow.python.autograph.pyct', 'tensorflow.python.autograph.pyct.anno', 'gast', 'gast.gast', 'gast.ast3', 'gast.astn', 'tensorflow.python.autograph.pyct.ast_util', 'tensorflow.python.autograph.pyct.parser', 'tensorflow.python.autograph.pyct.inspect_utils', 'tensorflow.python.autograph.pyct.cfg', 'tensorflow.python.autograph.pyct.compiler', 'astor', 'astor.code_gen', 'astor.op_util', 'astor.node_util', 'astor.string_repr', 'astor.source_repr', 'astor.file_util', 'astor.tree_walk', 'tensorflow.python.autograph.pyct.origin_info', 'tensorflow.python.autograph.pyct.pretty_printer', 'termcolor', 'tensorflow.python.autograph.pyct.qual_names', 'tensorflow.python.autograph.pyct.templates', 'tensorflow.python.autograph.pyct.transformer', 'tensorflow.python.autograph.pyct.static_analysis', 'tensorflow.python.autograph.pyct.static_analysis.activity', 'tensorflow.python.autograph.pyct.static_analysis.annos', 'tensorflow.python.autograph.pyct.static_analysis.liveness', 'tensorflow.python.autograph.pyct.static_analysis.reaching_definitions', 'tensorflow.python.autograph.impl', 'tensorflow.python.autograph.impl.api', 'tensorflow.python.autograph.core.ag_ctx', 'tensorflow.python.autograph.impl.conversion', 'tensorflow.python.autograph.converters', 'tensorflow.python.autograph.converters.arg_defaults', 'tensorflow.python.autograph.converters.asserts', 'tensorflow.python.autograph.converters.break_statements', 'tensorflow.python.autograph.converters.call_trees', 'tensorflow.python.autograph.converters.conditional_expressions', 'tensorflow.python.autograph.converters.continue_statements', 'tensorflow.python.autograph.converters.control_flow', 'tensorflow.python.autograph.converters.directives', 'tensorflow.python.autograph.lang', 'tensorflow.python.autograph.lang.directives', 'tensorflow.python.autograph.converters.function_scopes', 'tensorflow.python.autograph.converters.lists', 'tensorflow.python.autograph.converters.logical_expressions', 'tensorflow.python.autograph.converters.return_statements', 'tensorflow.python.autograph.converters.slices', 'tensorflow.python.autograph.core.config', 'tensorflow.python.autograph.core.config_lib', 'tensorflow.python.autograph.core.function_wrappers', 'tensorflow.python.autograph.core.naming', 'tensorflow.python.autograph.core.unsupported_features_checker', 'tensorflow.python.autograph.lang.special_functions', 'tensorflow.python.autograph.pyct.errors', 'tensorflow.python.training.experimental.loss_scaling_gradient_tape', 'tensorflow.python.distribute', 'tensorflow.python.distribute.cluster_resolver', 'tensorflow.python.distribute.cluster_resolver.cluster_resolver', 'tensorflow.python.training.server_lib', 'tensorflow.python.distribute.cluster_resolver.gce_cluster_resolver', 'tensorflow.python.distribute.cluster_resolver.kubernetes_cluster_resolver', 'tensorflow.python.distribute.cluster_resolver.slurm_cluster_resolver', 'tensorflow.python.distribute.cluster_resolver.tfconfig_cluster_resolver', 'tensorflow.python.distribute.cluster_resolver.tpu_cluster_resolver', 'six.moves.urllib', 'six.moves.urllib.error', 'six.moves.urllib.request', 'tensorflow.python.distribute.cross_device_ops', 'tensorflow.python.client.device_lib', 'tensorflow.core.framework.device_attributes_pb2', 'tensorflow_core.python._pywrap_device_lib', 'tensorflow.python.distribute.cross_device_utils', 'tensorflow.python.distribute.all_reduce', 'tensorflow.python.ops.nccl_ops', 'tensorflow.python.ops.gen_nccl_ops', 'tensorflow.python.distribute.values', 'tensorflow.python.distribute.device_util', 'tensorflow.python.distribute.distribute_lib', 'tensorflow.python.distribute.distribution_strategy_context', 'tensorflow.python.distribute.numpy_dataset', 'tensorflow.python.distribute.reduce_util', 'tensorflow.python.ops.losses', 'tensorflow.python.ops.losses.loss_reduction', 'tensorflow.python.ops.losses.losses_impl', 'tensorflow.python.ops.confusion_matrix', 'tensorflow.python.ops.nn', 'tensorflow.python.ops.ctc_ops', 'tensorflow.python.ops.gen_ctc_ops', 'tensorflow.python.ops.inplace_ops', 'tensorflow.python.ops.linalg_ops', 'tensorflow.python.ops.map_fn', 'tensorflow.python.ops.nn_grad', 'tensorflow.python.ops.embedding_ops', 'tensorflow.python.ops.data_flow_grad', 'tensorflow.python.ops.nn_impl', 'tensorflow.python.ops.candidate_sampling_ops', 'tensorflow.python.ops.gen_candidate_sampling_ops', 'tensorflow.python.ops.losses.util', 'tensorflow.python.ops.weights_broadcast_ops', 'tensorflow.python.ops.sets', 'tensorflow.python.ops.sets_impl', 'tensorflow.python.ops.gen_set_ops', 'tensorflow.python.ops.collective_ops', 'tensorflow.python.ops.gen_collective_ops', 'tensorflow.python.framework.kernels', 'tensorflow.core.framework.kernel_def_pb2', 'tensorflow.python.distribute.mirrored_strategy', 'tensorflow.python.distribute.input_lib', 'tensorflow.python.data.experimental.ops.distribute', 'tensorflow.python.data.ops.multi_device_iterator_ops', 'tensorflow.python.distribute.input_ops', 'tensorflow.python.distribute.multi_worker_util', 'tensorflow.python.distribute.distribute_coordinator_context', 'tensorflow.python.distribute.shared_variable_creator', 'tensorflow.python.training.coordinator', 'tensorflow.python.distribute.one_device_strategy', 'tensorflow.python.distribute.experimental', 'tensorflow.python.distribute.central_storage_strategy', 'tensorflow.python.distribute.parameter_server_strategy', 'tensorflow.python.training.device_setter', 'tensorflow.python.distribute.collective_all_reduce_strategy', 'tensorflow.python.distribute.tpu_strategy', 'tensorflow.python.tpu', 'tensorflow.python.tpu.device_assignment', 'tensorflow.python.tpu.topology', 'tensorflow.core.protobuf.tpu', 'tensorflow.core.protobuf.tpu.topology_pb2', 'tensorflow.python.tpu.tpu', 'tensorflow.core.protobuf.tpu.dynamic_padding_pb2', 'tensorflow.python.compiler', 'tensorflow.python.compiler.xla', 'tensorflow.python.compiler.xla.jit', 'tensorflow.python.compiler.xla.xla', 'tensorflow_core.compiler', 'tensorflow.compiler.jit', 'tensorflow.compiler.jit.ops', 'tensorflow.compiler.jit.ops.xla_ops', 'tensorflow.compiler.jit.ops.xla_ops_grad', 'tensorflow.python.distribute.summary_op_util', 'tensorflow.python.tpu.tpu_function', 'tensorflow.python.tpu.ops', 'tensorflow.python.tpu.ops.tpu_ops', 'tensorflow.python.ops.gen_tpu_ops', 'tensorflow.python.tpu.tpu_strategy_util', 'tensorflow.python.tpu.tpu_system_metadata', 'tensorflow.python.tpu.training_loop', 'tensorflow.python.tpu.tensor_tracer', 'tensorflow.python.platform.analytics', 'tensorflow.python.tpu.tensor_tracer_flags', 'tensorflow.python.tpu.tensor_tracer_report', 'tensorflow.python.tpu.tensor_tracer_pb2', 'tensorflow.python.training.experimental.loss_scale', 'tensorflow.python.ops.array_grad', 'tensorflow.python.ops.cudnn_rnn_grad', 'tensorflow.python.ops.gen_cudnn_rnn_ops', 'tensorflow.python.ops.manip_grad', 'tensorflow.python.ops.manip_ops', 'tensorflow.python.ops.gen_manip_ops', 'tensorflow.python.ops.math_grad', 'tensorflow.python.ops.random_grad', 'tensorflow.python.ops.rnn_grad', 'tensorflow.python.ops.gen_rnn_ops', 'tensorflow.python.ops.sparse_grad', 'tensorflow.python.ops.state_grad', 'tensorflow.python.ops.tensor_array_grad', 'tensorflow.python.ops.special_math_ops', 'opt_einsum', 'opt_einsum.blas', 'opt_einsum.helpers', 'opt_einsum.parser', 'opt_einsum.paths', 'opt_einsum.path_random', 'opt_einsum.contract', 'opt_einsum.backends', 'opt_einsum.backends.cupy', 'opt_einsum.sharing', 'opt_einsum.backends.dispatch', 'opt_einsum.backends.object_arrays', 'opt_einsum.backends.jax', 'opt_einsum.backends.tensorflow', 'opt_einsum.backends.theano', 'opt_einsum.backends.torch', 'opt_einsum._version', 'tensorflow.compiler.tf2xla', 'tensorflow.compiler.tf2xla.ops', 'tensorflow.compiler.tf2xla.ops.gen_xla_ops', 'tensorflow.python.eager.wrap_function', 'tensorflow.python.saved_model.nested_structure_coder', 'tensorflow.python.ops.batch_ops', 'tensorflow.python.ops.gen_batch_ops', 'tensorflow.python.ops.critical_section_ops', 'tensorflow.python.ops.gradients', 'tensorflow.python.eager.forwardprop', 'tensorflow.python.ops.gradients_impl', 'tensorflow.python.ops.control_flow_grad', 'tensorflow.python.ops.image_grad', 'tensorflow.python.ops.gen_image_ops', 'tensorflow.python.ops.linalg_grad', 'tensorflow.python.ops.linalg', 'tensorflow.python.ops.linalg.linalg_impl', 'tensorflow.python.ops.linalg.linear_operator_util', 'tensorflow.python.module', 'tensorflow.python.module.module', 'tensorflow.python.ops.optional_grad', 'tensorflow.python.ops.histogram_ops', 'tensorflow.python.ops.lookup_ops', 'tensorflow.python.ops.gen_lookup_ops', 'tensorflow.python.ops.numerics', 'tensorflow.python.ops.partitioned_variables', 'tensorflow.python.ops.proto_ops', 'tensorflow.python.ops.gen_decode_proto_ops', 'tensorflow.python.ops.gen_encode_proto_ops', 'tensorflow.python.ops.stateless_random_ops', 'tensorflow.python.ops.template', 'tensorflow.python.training.tracking.util', 'tensorflow.python.training.saving.functional_saver', 'tensorflow.python.training.tracking.graph_view', 'tensorflow.python.training.optimizer', 'tensorflow.python.training.slot_creator', 'tensorflow.python.ops.parallel_for', 'tensorflow.python.ops.parallel_for.control_flow_ops', 'tensorflow.python.ops.parallel_for.pfor', 'tensorflow.compiler.tf2xla.python', 'tensorflow.compiler.tf2xla.python.xla', 'tensorflow.python.ops.bitwise_ops', 'tensorflow.python.ops.parallel_for.gradients', 'tensorflow.python.compiler.tensorrt', 'tensorflow.python.compiler.tensorrt.trt_convert', 'tensorflow.compiler.tf2tensorrt', 'tensorflow.compiler.tf2tensorrt.wrap_py_utils', '_wrap_py_utils', 'tensorflow.python.framework.convert_to_constants', 'tensorflow.python.grappler', 'tensorflow.python.grappler.tf_optimizer', 'tensorflow.python.grappler.cluster', 'tensorflow.core.grappler', 'tensorflow.core.grappler.costs', 'tensorflow.core.grappler.costs.op_performance_data_pb2', 'tensorflow.core.protobuf.device_properties_pb2', 'tensorflow.python.saved_model.builder', 'tensorflow.python.saved_model.builder_impl', 'tensorflow.core.protobuf.saved_model_pb2', 'tensorflow.python.saved_model.constants', 'tensorflow.python.saved_model.signature_def_utils', 'tensorflow.python.saved_model.signature_def_utils_impl', 'tensorflow.python.saved_model.signature_constants', 'tensorflow.python.saved_model.utils_impl', 'tensorflow.python.saved_model.load', 'tensorflow.python.saved_model.function_deserialization', 'tensorflow.python.framework.function_def_to_graph', 'tensorflow.python.saved_model.load_v1_in_v2', 'tensorflow.python.saved_model.loader_impl', 'tensorflow.python.saved_model.signature_serialization', 'tensorflow.python.training.monitored_session', 'tensorflow.python.ops.resources', 'tensorflow.python.summary.summary', 'google.protobuf.json_format', 'tensorflow.python.training.queue_runner', 'tensorflow.python.training.queue_runner_impl', 'tensorflow.core.protobuf.queue_runner_pb2', 'tensorflow.python.training.session_manager', 'tensorflow.python.saved_model.loader', 'tensorflow.python.saved_model.save', 'tensorflow.python.saved_model.function_serialization', 'tensorflow.python.saved_model.save_options', 'tensorflow.python.saved_model.tag_constants', 'tensorflow.python.ops.initializers_ns', 'tensorflow_core.python.keras', 'tensorflow.python.keras', 'tensorflow.python.keras.models', 'tensorflow.python.keras.backend', 'tensorflow.python.distribute.distribute_coordinator', 'tensorflow.python.keras.backend_config', 'tensorflow.python.ops.image_ops', 'tensorflow.python.ops.image_ops_impl', 'tensorflow.python.training.moving_averages', 'tensorflow.python.keras.metrics', 'tensorflow.python.keras.engine', 'tensorflow.python.keras.engine.base_layer', 'tensorflow.python.keras.constraints', 'tensorflow.python.keras.utils', 'tensorflow.python.keras.utils.generic_utils', 'tensorflow.python.keras.initializers', 'tensorflow.python.ops.init_ops_v2', 'tensorflow.python.keras.regularizers', 'tensorflow.python.keras.engine.base_layer_utils', 'tensorflow.python.ops.control_flow_v2_func_graphs', 'tensorflow.python.keras.engine.input_spec', 'tensorflow.python.keras.engine.node', 'tensorflow.python.keras.mixed_precision', 'tensorflow.python.keras.mixed_precision.experimental', 'tensorflow.python.keras.mixed_precision.experimental.autocast_variable', 'tensorflow.python.keras.mixed_precision.experimental.policy', 'tensorflow.python.keras.mixed_precision.experimental.loss_scale', 'tensorflow.python.keras.saving', 'tensorflow.python.keras.saving.saved_model', 'tensorflow.python.keras.saving.saved_model.layer_serialization', 'tensorflow.python.keras.saving.saved_model.base_serialization', 'tensorflow.python.util.serialization', 'tensorflow.python.keras.saving.saved_model.constants', 'tensorflow.python.keras.saving.saved_model.save_impl', 'tensorflow.python.keras.saving.saving_utils', 'tensorflow.python.keras.losses', 'tensorflow.python.keras.utils.losses_utils', 'tensorflow.python.keras.utils.tf_utils', 'tensorflow.python.keras.optimizers', 'tensorflow.python.keras.optimizer_v2', 'tensorflow.python.keras.optimizer_v2.adadelta', 'tensorflow.python.keras.optimizer_v2.optimizer_v2', 'tensorflow.python.keras.optimizer_v2.learning_rate_schedule', 'tensorflow.python.training.training_ops', 'tensorflow.python.training.gen_training_ops', 'tensorflow.python.keras.optimizer_v2.adagrad', 'tensorflow.python.keras.optimizer_v2.adam', 'tensorflow.python.keras.optimizer_v2.adamax', 'tensorflow.python.keras.optimizer_v2.ftrl', 'tensorflow.python.keras.optimizer_v2.gradient_descent', 'tensorflow.python.keras.optimizer_v2.nadam', 'tensorflow.python.keras.optimizer_v2.rmsprop', 'tensorflow.python.keras.utils.io_utils', 'h5py', 'h5py._errors', 'h5py._hl', 'h5py._hl.compat', 'h5py.version', 'h5py.h5', 'h5py.defs', 'h5py._objects', 'h5py._conv', 'h5py.h5r', 'h5py.h5t', 'h5py.utils', 'h5py.h5py_warnings', 'h5py.h5z', 'h5py.h5a', 'h5py.h5s', 'h5py.h5p', 'h5py.h5ac', 'h5py._proxy', 'h5py.h5d', 'h5py.h5ds', 'h5py.h5f', 'h5py.h5g', 'h5py.h5i', 'h5py.h5fd', 'h5py.h5pl', 'h5py._hl.filters', 'h5py._hl.base', 'h5py._hl.files', 'h5py._hl.group', 'h5py.h5o', 'h5py.h5l', 'h5py._hl.dataset', 'h5py._hl.selections', 'h5py._hl.selections2', 'h5py._hl.datatype', 'h5py._hl.vds', 'h5py._hl.attrs', 'tensorflow.python.keras.saving.saved_model.load', 'tensorflow.python.keras.saving.saved_model.utils', 'tensorflow.python.keras.saving.saved_model.serialized_attributes', 'tensorflow.python.keras.utils.metrics_utils', 'tensorflow.python.keras.engine.network', 'tensorflow.python.keras.engine.input_layer', 'tensorflow.python.keras.distribute', 'tensorflow.python.keras.distribute.distributed_training_utils', 'tensorflow.python.keras.callbacks', 'tensorflow.python.distribute.distributed_file_utils', 'tensorflow.python.keras.distribute.multi_worker_training_state', 'tensorflow.python.keras.utils.mode_keys', 'tensorflow.python.saved_model.model_utils', 'tensorflow.python.saved_model.model_utils.export_output', 'tensorflow.python.saved_model.model_utils.export_utils', 'tensorflow.python.saved_model.model_utils.mode_keys', 'tensorflow.python.keras.utils.data_utils', 'multiprocessing.dummy', 'multiprocessing.dummy.connection', 'tensorflow.python.keras.engine.training_utils', 'tensorflow.python.framework.composite_tensor_utils', 'tensorflow.python.keras.saving.hdf5_format', 'tensorflow.python.keras.saving.model_config', 'yaml', 'yaml.error', 'yaml.tokens', 'yaml.events', 'yaml.nodes', 'yaml.loader', 'yaml.reader', 'yaml.scanner', 'yaml.parser', 'yaml.composer', 'yaml.constructor', 'yaml.resolver', 'yaml.dumper', 'yaml.emitter', 'yaml.serializer', 'yaml.representer', 'yaml.cyaml', 'yaml._yaml', 'tensorflow.python.keras.utils.conv_utils', 'tensorflow.python.keras.saving.save', 'tensorflow.python.keras.saving.saved_model.save', 'tensorflow.python.keras.saving.saved_model.network_serialization', 'tensorflow.python.keras.utils.layer_utils', 'tensorflow.python.keras.engine.sequential', 'tensorflow.python.keras.layers', 'tensorflow.python.keras.engine.base_preprocessing_layer', 'tensorflow.python.keras.engine.training_generator', 'tensorflow.python.keras.layers.preprocessing', 'tensorflow.python.keras.layers.preprocessing.normalization_v1', 'tensorflow.python.keras.engine.base_preprocessing_layer_v1', 'tensorflow.python.keras.layers.preprocessing.normalization', 'tensorflow.python.keras.layers.preprocessing.text_vectorization_v1', 'tensorflow.python.keras.layers.preprocessing.text_vectorization', 'tensorflow.python.keras.layers.advanced_activations', 'tensorflow.python.keras.layers.convolutional', 'tensorflow.python.keras.activations', 'tensorflow.python.keras.layers.pooling', 'tensorflow.python.keras.layers.core', 'tensorflow.python.keras.layers.dense_attention', 'tensorflow.python.keras.layers.embeddings', 'tensorflow.python.keras.layers.local', 'tensorflow.python.keras.layers.merge', 'tensorflow.python.keras.layers.noise', 'tensorflow.python.keras.layers.normalization', 'tensorflow.python.keras.layers.normalization_v2', 'tensorflow.python.keras.layers.kernelized', 'tensorflow.python.keras.layers.recurrent', 'tensorflow.python.keras.layers.recurrent_v2', 'tensorflow.python.keras.layers.convolutional_recurrent', 'tensorflow.python.keras.layers.cudnn_recurrent', 'tensorflow.python.keras.layers.wrappers', 'tensorflow.python.keras.layers.rnn_cell_wrapper_v2', 'tensorflow.python.ops.rnn_cell_wrapper_impl', 'tensorflow.python.keras.layers.serialization', 'tensorflow.python.keras.engine.training', 'tensorflow.python.keras.engine.training_arrays', 'tensorflow.python.keras.engine.training_distributed', 'tensorflow.python.keras.engine.partial_batch_padding_handler', 'tensorflow.python.keras.engine.training_eager', 'tensorflow.python.keras.mixed_precision.experimental.loss_scale_optimizer', 'tensorflow.python.keras.engine.training_v2', 'tensorflow.python.keras.engine.data_adapter', 'pandas', 'pytz', 'pytz.exceptions', 'pytz.lazy', 'pytz.tzinfo', 'pytz.tzfile', 'dateutil', 'dateutil._version', 'pandas.compat', 'pandas.compat.chainmap', 'dateutil.parser', 'dateutil.parser._parser', 'dateutil.relativedelta', 'dateutil._common', 'dateutil.tz', 'dateutil.tz.tz', 'dateutil.tz._common', 'dateutil.tz._factories', 'dateutil.parser.isoparser', 'pandas.compat.numpy', 'pandas._libs', 'pandas._libs.tslib', 'pandas._libs.tslibs', 'pandas._libs.tslibs.conversion', 'pandas._libs.tslibs.np_datetime', '_cython_0_28_2', 'pandas._libs.tslibs.nattype', 'pandas._libs.tslibs.timedeltas', 'pandas._libs.tslibs.timezones', 'pandas._libs.tslibs.parsing', 'pandas._libs.tslibs.ccalendar', 'pandas._libs.tslibs.strptime', 'pandas._libs.tslibs.timestamps', 'pandas._libs.tslibs.fields', 'pandas._libs.hashtable', 'pandas._libs.missing', 'pandas._libs.lib', 'pandas.core', 'pandas.core.config_init', 'pandas.core.config', 'pandas.io', 'pandas.io.formats', 'pandas.io.formats.printing', 'pandas.core.dtypes', 'pandas.core.dtypes.inference', 'pandas.io.formats.console', 'pandas.io.formats.terminal', 'pandas.core.api', 'pandas.core.algorithms', 'pandas.core.dtypes.cast', 'pandas.core.dtypes.common', 'pandas._libs.algos', 'pandas.core.dtypes.dtypes', 'pandas.core.dtypes.generic', 'pandas.core.dtypes.base', 'pandas.errors', 'pandas.core.dtypes.missing', 'pandas.core.common', 'pandas.util', 'pandas.util._decorators', 'pandas._libs.properties', 'pandas.core.util', 'pandas.core.util.hashing', 'pandas._libs.hashing', 'pandas.core.arrays', 'pandas.core.arrays.base', 'pandas.compat.numpy.function', 'pandas.util._validators', 'pandas.core.arrays.categorical', 'pandas.core.accessor', 'pandas.core.base', 'pandas.core.nanops', 'pandas.core.missing', 'pandas.core.groupby', 'pandas.core.groupby.groupby', 'pandas.core.index', 'pandas.core.indexes', 'pandas.core.indexes.api', 'pandas.core.indexes.base', 'pandas._libs.index', 'pandas._libs.tslibs.period', 'pandas._libs.tslibs.frequencies', 'pandas._libs.tslibs.resolution', 'pandas.tseries', 'pandas.tseries.offsets', 'pandas.core.tools', 'pandas.core.tools.datetimes', 'dateutil.easter', 'pandas._libs.tslibs.offsets', 'pandas.tseries.frequencies', 'pandas._libs.join', 'pandas.core.ops', 'pandas._libs.ops', 'pandas.core.indexes.frozen', 'pandas.core.dtypes.concat', 'pandas.core.sorting', 'pandas.core.strings', 'pandas.core.indexes.category', 'pandas.core.indexes.multi', 'pandas.core.indexes.interval', 'pandas._libs.interval', 'pandas.core.indexes.datetimes', 'pandas.core.indexes.numeric', 'pandas.core.indexes.datetimelike', 'pandas.core.tools.timedeltas', 'pandas.core.indexes.timedeltas', 'pandas.core.indexes.range', 'pandas.core.indexes.period', 'pandas.core.frame', 'pandas.core.generic', 'pandas.core.indexing', 'pandas._libs.indexing', 'pandas.core.internals', 'pandas._libs.internals', 'pandas.core.sparse', 'pandas.core.sparse.array', 'pandas._libs.sparse', 'pandas.io.formats.format', 'pandas.io.common', 'pandas.core.series', 'pandas.core.indexes.accessors', 'pandas.plotting', 'pandas.plotting._misc', 'pandas.plotting._style', 'pandas.plotting._compat', 'pandas.plotting._tools', 'pandas.plotting._core', 'pandas.plotting._converter', 'matplotlib', 'matplotlib.cbook', 'matplotlib.cbook.deprecation', 'matplotlib.cbook._backports', 'matplotlib.compat', 'matplotlib.compat.subprocess', 'matplotlib.rcsetup', 'matplotlib.testing', 'matplotlib.fontconfig_pattern', 'pyparsing', 'matplotlib.colors', 'matplotlib._color_data', 'cycler', 'matplotlib._version'] INFO:root:正在从数据库读取原始数据 INFO:root:正在对原始数据进行数据扩增 INFO:root:正在统计原始数据的标签类型 INFO:root:正在制作词表 INFO:root:正在获取词向量 INFO:root:开始训练基础分类器 INFO:root:初始分类器准确率为0.5275 INFO:root:开始第1次重训练 INFO:root:开始第2次重训练 INFO:root:开始第3次重训练 INFO:root:开始第4次重训练 INFO:root:开始第5次重训练 INFO:root:开始第6次重训练 INFO:root:开始第7次重训练 INFO:root:开始第8次重训练 INFO:root:训练完成,测试集准确率为0.52625 DEBUG:matplotlib:$HOME=/Users/tanghaojie DEBUG:matplotlib:matplotlib data path /Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/matplotlib/mpl-data DEBUG:matplotlib:loaded rc file /Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/matplotlib/mpl-data/matplotlibrc DEBUG:matplotlib:matplotlib version 2.2.2 DEBUG:matplotlib:interactive is False DEBUG:matplotlib:platform is darwin DEBUG:matplotlib:loaded modules: ['builtins', 'sys', '_frozen_importlib', '_imp', '_warnings', '_thread', '_weakref', '_frozen_importlib_external', '_io', 'marshal', 'posix', 'zipimport', 'encodings', 'codecs', '_codecs', 'encodings.aliases', 'encodings.utf_8', '_signal', '__main__', 'encodings.latin_1', 'io', 'abc', '_weakrefset', '_bootlocale', '_locale', 'encodings.ascii', 'site', 'os', 'errno', 'stat', '_stat', 'posixpath', 'genericpath', 'os.path', '_collections_abc', '_sitebuiltins', 'sysconfig', '_sysconfigdata_m_darwin_darwin', '_osx_support', 're', 'enum', 'types', 'functools', '_functools', 'collections', 'operator', '_operator', 'keyword', 'heapq', '_heapq', 'itertools', 'reprlib', '_collections', 'weakref', 'collections.abc', 'sre_compile', '_sre', 'sre_parse', 'sre_constants', 'copyreg', 'importlib', 'importlib._bootstrap', 'importlib._bootstrap_external', 'warnings', 'importlib.util', 'importlib.abc', 'importlib.machinery', 'contextlib', 'google', 'mpl_toolkits', 'zope', 'idlelib', 'idlelib.run', 'linecache', 'tokenize', 'token', 'queue', 'threading', 'time', 'traceback', 'tkinter', '_tkinter', 'tkinter.constants', 'idlelib.autocomplete', 'string', '_string', 'idlelib.autocomplete_w', 'platform', 'subprocess', 'signal', '_posixsubprocess', 'select', 'selectors', 'math', 'idlelib.multicall', 'idlelib.config', 'configparser', 'idlelib.hyperparser', 'idlelib.pyparse', 'idlelib.calltips', 'inspect', 'ast', '_ast', 'dis', 'opcode', '_opcode', 'textwrap', 'idlelib.calltip_w', 'idlelib.debugger_r', 'idlelib.debugger', 'bdb', 'fnmatch', 'idlelib.macosx', 'idlelib.scrolledlist', 'idlelib.windows', 'idlelib.debugobj_r', 'idlelib.rpc', 'pickle', 'struct', '_struct', '_compat_pickle', '_pickle', 'socket', '_socket', 'socketserver', 'idlelib.iomenu', 'shlex', 'tempfile', 'shutil', 'zlib', 'bz2', '_compression', '_bz2', 'lzma', '_lzma', 'pwd', 'grp', 'random', 'hashlib', '_hashlib', '_blake2', '_sha3', 'bisect', '_bisect', '_random', 'locale', 'idlelib.stackviewer', 'idlelib.debugobj', 'idlelib.tree', 'idlelib.zoomheight', 'pydoc', 'pkgutil', 'urllib', 'urllib.parse', 'copy', 'torch', 'torch._utils', 'torch._utils_internal', '__future__', 'torch.version', 'torch._six', 'numpy', 'numpy._globals', 'numpy.__config__', 'numpy.version', 'numpy._distributor_init', 'numpy.core', 'numpy.core.multiarray', 'numpy.core.overrides', 'datetime', '_datetime', 'numpy.core._multiarray_umath', 'numpy.compat', 'numpy.compat._inspect', 'numpy.compat.py3k', 'pathlib', 'ntpath', 'numpy.core.umath', 'numpy.core.numerictypes', 'numbers', 'numpy.core._string_helpers', 'numpy.core._type_aliases', 'numpy.core._dtype', 'numpy.core.numeric', 'numpy.core.shape_base', 'numpy.core._asarray', 'numpy.core.fromnumeric', 'numpy.core._methods', 'numpy.core._exceptions', 'numpy.core._ufunc_config', 'numpy.core.arrayprint', 'numpy.core.defchararray', 'numpy.core.records', 'numpy.core.memmap', 'numpy.core.function_base', 'numpy.core.machar', 'numpy.core.getlimits', 'numpy.core.einsumfunc', 'numpy.core._add_newdocs', 'numpy.core._multiarray_tests', 'numpy.core._dtype_ctypes', '_ctypes', 'ctypes', 'ctypes._endian', 'numpy.core._internal', 'numpy._pytesttester', 'numpy.lib', 'numpy.lib.mixins', 'numpy.lib.scimath', 'numpy.lib.type_check', 'numpy.lib.ufunclike', 'numpy.lib.index_tricks', 'numpy.matrixlib', 'numpy.matrixlib.defmatrix', 'numpy.linalg', 'numpy.linalg.linalg', 'numpy.lib.twodim_base', 'numpy.linalg.lapack_lite', 'numpy.linalg._umath_linalg', 'numpy.lib.function_base', 'numpy.lib.histograms', 'numpy.lib.stride_tricks', 'numpy.lib.nanfunctions', 'numpy.lib.shape_base', 'numpy.lib.polynomial', 'numpy.lib.utils', 'numpy.lib.arraysetops', 'numpy.lib.npyio', 'numpy.lib.format', 'numpy.lib._datasource', 'numpy.lib._iotools', 'numpy.lib.financial', 'decimal', '_decimal', 'numpy.lib.arrayterator', 'numpy.lib.arraypad', 'numpy.lib._version', 'numpy.fft', 'numpy.fft._pocketfft', 'numpy.fft._pocketfft_internal', 'numpy.fft.helper', 'numpy.polynomial', 'numpy.polynomial.polynomial', 'numpy.polynomial.polyutils', 'numpy.polynomial._polybase', 'numpy.polynomial.chebyshev', 'numpy.polynomial.legendre', 'numpy.polynomial.hermite', 'numpy.polynomial.hermite_e', 'numpy.polynomial.laguerre', 'numpy.random', 'numpy.random._pickle', 'numpy.random.mtrand', 'cython_runtime', 'numpy.random._bit_generator', '_cython_0_29_19', 'numpy.random._common', 'secrets', 'base64', 'binascii', 'hmac', 'numpy.random._bounded_integers', 'numpy.random._mt19937', 'numpy.random._philox', 'numpy.random._pcg64', 'numpy.random._sfc64', 'numpy.random._generator', 'numpy.ctypeslib', 'numpy.ma', 'numpy.ma.core', 'numpy.ma.extras', 'numpy.testing', 'unittest', 'unittest.result', 'unittest.util', 'unittest.case', 'difflib', 'logging', 'atexit', 'pprint', 'unittest.suite', 'unittest.loader', 'unittest.main', 'argparse', 'gettext', 'unittest.runner', 'unittest.signals', 'numpy.testing._private', 'numpy.testing._private.utils', 'gc', 'numpy.testing._private.decorators', 'numpy.testing._private.nosetester', 'torch._C._onnx', 'torch._C._jit_tree_views', 'torch._C._jit', 'torch._C', 'torch.random', 'torch.serialization', 'tarfile', 'zipfile', 'torch._tensor_str', 'torch.tensor', 'torch.utils', 'torch.utils.hooks', 'torch.storage', 'torch.cuda', 'multiprocessing', 'multiprocessing.context', 'multiprocessing.process', 'multiprocessing.reduction', 'array', '__mp_main__', 'multiprocessing.util', 'torch.cuda._utils', 'torch.cuda.random', 'torch.cuda.sparse', 'torch.cuda.profiler', 'torch.cuda.nvtx', 'glob', 'torch.cuda.streams', 'torch.sparse', 'torch.functional', 'torch.nn', 'torch.nn.modules', 'torch.nn.modules.module', 'torch.nn.backends', 'torch.nn.backends.thnn', 'torch.nn.backends.backend', 'torch.nn._functions', 'torch.nn._functions.thnn', 'torch.nn._functions.thnn.auto', 'torch._thnn', 'torch._thnn.utils', 'torch.autograd', 'torch.autograd.variable', 'torch.autograd.function', 'torch.autograd.gradcheck', 'torch.testing', 'torch.autograd.grad_mode', 'torch.autograd.anomaly_mode', 'torch.autograd.profiler', 'torch.nn._functions.thnn.auto_double_backwards', 'torch.nn._functions.thnn.auto_symbolic', 'torch.autograd._functions', 'torch.autograd._functions.tensor', 'torch.autograd._functions.utils', 'torch.nn._functions.thnn.normalization', 'torch.nn._functions.thnn.fold', 'torch.nn._functions.thnn.sparse', 'torch.nn.parameter', 'torch.nn.modules.linear', 'torch.nn.functional', 'torch.nn._reduction', 'torch._jit_internal', 'typing', 'typing.io', 'typing.re', 'torch.nn.modules.utils', 'torch.nn._functions.vision', 'torch.backends', 'torch.backends.cudnn', 'torch.nn.grad', 'torch.nn._VF', 'torch.nn.init', 'torch.nn.modules.conv', 'torch.nn.modules.activation', 'torch.nn.modules.loss', 'torch.nn.modules.container', 'torch.nn.modules.pooling', 'torch.nn.modules.batchnorm', 'torch.nn.modules.instancenorm', 'torch.nn.modules.normalization', 'torch.nn.modules.dropout', 'torch.nn.modules.padding', 'torch.nn.modules.sparse', 'torch.nn.modules.rnn', 'torch.nn.utils', 'torch.nn.utils.rnn', 'torch.nn.utils.clip_grad', 'torch.nn.utils.weight_norm', 'torch.nn.utils.convert_parameters', 'torch.nn.utils.spectral_norm', 'torch.nn.modules.pixelshuffle', 'torch.nn.modules.upsampling', 'torch.nn.modules.distance', 'torch.nn.modules.fold', 'torch.nn.modules.adaptive', 'torch.nn.parallel', 'torch.nn.parallel.parallel_apply', 'torch.nn.parallel.replicate', 'torch.cuda.comm', 'torch.cuda.nccl', 'torch.nn.parallel.data_parallel', 'torch.nn.parallel.scatter_gather', 'torch.nn.parallel._functions', 'torch.nn.parallel.distributed', 'torch.distributed', 'torch.nn.parallel.distributed_cpu', 'torch.nn.parallel.deprecated', 'torch.nn.parallel.deprecated.distributed', 'torch.distributed.deprecated', 'torch.nn.parallel.deprecated.distributed_cpu', 'torch.optim', 'torch.optim.adadelta', 'torch.optim.optimizer', 'torch.optim.adagrad', 'torch.optim.adam', 'torch.optim.sparse_adam', 'torch.optim.adamax', 'torch.optim.asgd', 'torch.optim.sgd', 'torch.optim.rprop', 'torch.optim.rmsprop', 'torch.optim.lbfgs', 'torch.optim.lr_scheduler', 'torch.multiprocessing', 'torch.multiprocessing.reductions', 'multiprocessing.resource_sharer', 'torch.multiprocessing.spawn', 'multiprocessing.connection', '_multiprocessing', 'torch.utils.backcompat', 'torch.onnx', 'torch.jit', 'torch.jit.frontend', 'torch.jit.annotations', 'torch.distributions', 'torch.distributions.bernoulli', 'torch.distributions.constraints', 'torch.distributions.exp_family', 'torch.distributions.distribution', 'torch.distributions.utils', 'torch.distributions.beta', 'torch.distributions.dirichlet', 'torch.distributions.binomial', 'torch.distributions.categorical', 'torch.distributions.cauchy', 'torch.distributions.chi2', 'torch.distributions.gamma', 'torch.distributions.constraint_registry', 'torch.distributions.transforms', 'torch.distributions.exponential', 'torch.distributions.fishersnedecor', 'torch.distributions.geometric', 'torch.distributions.gumbel', 'torch.distributions.uniform', 'torch.distributions.transformed_distribution', 'torch.distributions.half_cauchy', 'torch.distributions.half_normal', 'torch.distributions.normal', 'torch.distributions.independent', 'torch.distributions.kl', 'torch.distributions.laplace', 'torch.distributions.logistic_normal', 'torch.distributions.lowrank_multivariate_normal', 'torch.distributions.multivariate_normal', 'torch.distributions.one_hot_categorical', 'torch.distributions.pareto', 'torch.distributions.poisson', 'torch.distributions.log_normal', 'torch.distributions.multinomial', 'torch.distributions.negative_binomial', 'torch.distributions.relaxed_bernoulli', 'torch.distributions.relaxed_categorical', 'torch.distributions.studentT', 'torch.distributions.weibull', 'torch.backends.cuda', 'torch.backends.mkl', 'torch._torch_docs', 'torch._tensor_docs', 'torch._storage_docs', 'torch._ops', 'data_processor', 'torch.utils.data', 'torch.utils.data.sampler', 'torch.utils.data.distributed', 'torch.utils.data.dataset', 'torch.utils.data.dataloader', 'sklearn', 'sklearn._config', 'sklearn._distributor_init', 'sklearn.__check_build', 'sklearn.__check_build._check_build', 'sklearn.base', 'sklearn.utils', 'timeit', 'scipy', 'scipy._lib', 'scipy._lib._testutils', 'scipy._lib.deprecation', 'scipy._distributor_init', 'scipy.__config__', 'scipy.version', 'scipy._lib._version', 'scipy._lib.six', 'scipy._lib._ccallback', 'scipy._lib._ccallback_c', 'scipy.fft', 'scipy.fft._basic', 'scipy._lib.uarray', 'scipy._lib._uarray', 'scipy._lib._uarray._backend', 'scipy._lib._uarray._uarray', 'scipy.fft._realtransforms', 'scipy.fft._helper', 'scipy.fft._pocketfft', 'scipy.fft._pocketfft.basic', 'scipy.fft._pocketfft.pypocketfft', 'scipy.fft._pocketfft.helper', 'scipy.fft._pocketfft.realtransforms', 'scipy.fft._backend', 'numpy.dual', 'scipy.sparse', 'scipy.sparse.base', 'scipy._lib._numpy_compat', 'scipy.sparse.sputils', 'scipy.sparse.csr', 'scipy.sparse._sparsetools', 'scipy.sparse.compressed', 'scipy._lib._util', 'scipy.sparse.data', 'scipy.sparse.dia', 'scipy.sparse._index', 'scipy.sparse.csc', 'scipy.sparse.lil', 'scipy.sparse._csparsetools', 'scipy.sparse.dok', 'scipy.sparse.coo', 'scipy.sparse.bsr', 'scipy.sparse.construct', 'scipy.sparse.extract', 'scipy.sparse._matrix_io', 'scipy.sparse.csgraph', 'scipy.sparse.csgraph._laplacian', 'scipy.sparse.csgraph._shortest_path', '_cython_0_29_13', 'scipy.sparse.csgraph._validation', 'scipy.sparse.csgraph._tools', 'scipy.sparse.csgraph._traversal', 'scipy.sparse.csgraph._min_spanning_tree', 'scipy.sparse.csgraph._flow', 'scipy.sparse.csgraph._matching', 'scipy.sparse.csgraph._reordering', 'sklearn.utils.murmurhash', 'sklearn.utils.class_weight', 'sklearn.utils._joblib', 'joblib', 'joblib.memory', 'joblib.hashing', 'joblib._compat', 'joblib.func_inspect', 'joblib.logger', 'joblib.disk', 'joblib._memory_helpers', 'joblib._store_backends', 'json', 'json.decoder', 'json.scanner', '_json', 'json.encoder', 'joblib.backports', 'distutils', 'distutils.version', 'joblib.numpy_pickle', 'joblib.compressor', 'joblib.numpy_pickle_utils', 'joblib.numpy_pickle_compat', 'joblib.parallel', 'joblib._multiprocessing_helpers', 'joblib.format_stack', 'joblib.my_exceptions', 'joblib._parallel_backends', 'joblib.pool', 'joblib._memmapping_reducer', 'mmap', 'uuid', 'ctypes.util', 'ctypes.macholib', 'ctypes.macholib.dyld', 'ctypes.macholib.framework', 'ctypes.macholib.dylib', 'multiprocessing.pool', 'joblib.executor', 'joblib.externals', 'joblib.externals.loky', 'joblib.externals.loky._base', 'concurrent', 'concurrent.futures', 'concurrent.futures._base', 'concurrent.futures.process', 'concurrent.futures.thread', 'joblib.externals.loky.backend', 'joblib.externals.loky.backend.context', 'joblib.externals.loky.backend.process', 'joblib.externals.loky.backend.compat', 'joblib.externals.loky.backend.compat_posix', 'multiprocessing.synchronize', 'joblib.externals.loky.backend.reduction', 'joblib.externals.loky.backend._posix_reduction', 'joblib.externals.cloudpickle', 'joblib.externals.cloudpickle.cloudpickle', 'joblib.externals.loky.reusable_executor', 'joblib.externals.loky.process_executor', 'joblib.externals.loky.backend.queues', 'multiprocessing.queues', 'joblib.externals.loky.backend.utils', 'joblib.externals.loky.cloudpickle_wrapper', 'sklearn.exceptions', 'sklearn.utils.deprecation', 'sklearn.utils.fixes', 'scipy.stats', 'scipy.stats.stats', 'scipy.spatial', 'scipy.spatial.kdtree', 'scipy.spatial.ckdtree', 'scipy.spatial.qhull', 'scipy._lib.messagestream', 'scipy.spatial._spherical_voronoi', 'scipy.spatial._voronoi', 'scipy.spatial._plotutils', 'scipy._lib.decorator', 'scipy.spatial._procrustes', 'scipy.linalg', 'scipy.linalg.linalg_version', 'scipy.linalg.misc', 'scipy.linalg.blas', 'scipy.linalg._fblas', 'scipy.linalg.lapack', 'scipy.linalg._flapack', 'scipy.linalg.basic', 'scipy.linalg.flinalg', 'scipy.linalg._flinalg', 'scipy.linalg.decomp', 'scipy.linalg.decomp_svd', 'scipy.linalg._solve_toeplitz', 'scipy.linalg.decomp_lu', 'scipy.linalg._decomp_ldl', 'scipy.linalg.decomp_cholesky', 'scipy.linalg.decomp_qr', 'scipy.linalg._decomp_qz', 'scipy.linalg.decomp_schur', 'scipy.linalg._decomp_polar', 'scipy.linalg.matfuncs', 'scipy.linalg.special_matrices', 'scipy.linalg._expm_frechet', 'scipy.linalg._matfuncs_sqrtm', 'scipy.linalg._solvers', 'scipy.linalg._procrustes', 'scipy.linalg._decomp_update', 'scipy.linalg.cython_blas', 'scipy.linalg.cython_lapack', 'scipy.linalg._sketches', 'scipy.spatial.distance', 'scipy.spatial._distance_wrap', 'scipy.spatial._hausdorff', 'scipy.special', 'scipy.special.sf_error', 'scipy.special._ufuncs', 'scipy.special._ufuncs_cxx', 'scipy.special._basic', 'scipy.special.specfun', 'scipy.special.orthogonal', 'scipy.special._comb', 'scipy.special._logsumexp', 'scipy.special.spfun_stats', 'scipy.special._ellip_harm', 'scipy.special._ellip_harm_2', 'scipy.special.lambertw', 'scipy.special._spherical_bessel', 'scipy.spatial.transform', 'scipy.spatial.transform.rotation', 'scipy.spatial.transform._rotation_groups', 'scipy.constants', 'scipy.constants.codata', 'scipy.constants.constants', 'scipy.spatial.transform._rotation_spline', 'scipy.ndimage', 'scipy.ndimage.filters', 'scipy.ndimage._ni_support', 'scipy.ndimage._nd_image', 'scipy.ndimage._ni_docstrings', 'scipy._lib.doccer', 'scipy.ndimage.fourier', 'scipy.ndimage.interpolation', 'scipy.ndimage.measurements', 'scipy.ndimage._ni_label', '_ni_label', 'scipy.ndimage.morphology', 'scipy.stats.distributions', 'scipy.stats._distn_infrastructure', 'scipy.stats._distr_params', 'scipy.optimize', 'scipy.optimize.optimize', 'scipy.optimize.linesearch', 'scipy.optimize.minpack2', 'scipy.optimize._minimize', 'scipy.optimize._trustregion_dogleg', 'scipy.optimize._trustregion', 'scipy.optimize._trustregion_ncg', 'scipy.optimize._trustregion_krylov', 'scipy.optimize._trlib', 'scipy.optimize._trlib._trlib', 'scipy.optimize._trustregion_exact', 'scipy.optimize._trustregion_constr', 'scipy.optimize._trustregion_constr.minimize_trustregion_constr', 'scipy.sparse.linalg', 'scipy.sparse.linalg.isolve', 'scipy.sparse.linalg.isolve.iterative', 'scipy.sparse.linalg.isolve._iterative', 'scipy.sparse.linalg.interface', 'scipy.sparse.linalg.isolve.utils', 'scipy._lib._threadsafety', 'scipy.sparse.linalg.isolve.minres', 'scipy.sparse.linalg.isolve.lgmres', 'scipy.sparse.linalg.isolve._gcrotmk', 'scipy.sparse.linalg.isolve.lsqr', 'scipy.sparse.linalg.isolve.lsmr', 'scipy.sparse.linalg.dsolve', 'scipy.sparse.linalg.dsolve.linsolve', 'scipy.sparse.linalg.dsolve._superlu', 'scipy.sparse.linalg.dsolve._add_newdocs', 'scipy.sparse.linalg.eigen', 'scipy.sparse.linalg.eigen.arpack', 'scipy.sparse.linalg.eigen.arpack.arpack', 'scipy.sparse.linalg.eigen.arpack._arpack', 'scipy.sparse.linalg.eigen.lobpcg', 'scipy.sparse.linalg.eigen.lobpcg.lobpcg', 'scipy.sparse.linalg.matfuncs', 'scipy.sparse.linalg._expm_multiply', 'scipy.sparse.linalg._onenormest', 'scipy.sparse.linalg._norm', 'scipy.optimize._differentiable_functions', 'scipy.optimize._numdiff', 'scipy.optimize._group_columns', 'scipy.optimize._hessian_update_strategy', 'scipy.optimize._constraints', 'scipy.optimize._trustregion_constr.equality_constrained_sqp', 'scipy.optimize._trustregion_constr.projections', 'scipy.optimize._trustregion_constr.qp_subproblem', 'scipy.optimize._trustregion_constr.canonical_constraint', 'scipy.optimize._trustregion_constr.tr_interior_point', 'scipy.optimize._trustregion_constr.report', 'scipy.optimize.lbfgsb', 'scipy.optimize._lbfgsb', 'scipy.optimize.tnc', 'scipy.optimize.moduleTNC', 'scipy.optimize.cobyla', 'scipy.optimize._cobyla', 'scipy.optimize.slsqp', 'scipy.optimize._slsqp', 'scipy.optimize._root', 'scipy.optimize.minpack', 'scipy.optimize._minpack', 'scipy.optimize._lsq', 'scipy.optimize._lsq.least_squares', 'scipy.optimize._lsq.trf', 'scipy.optimize._lsq.common', 'scipy.optimize._lsq.dogbox', 'scipy.optimize._lsq.lsq_linear', 'scipy.optimize._lsq.trf_linear', 'scipy.optimize._lsq.givens_elimination', 'scipy.optimize._lsq.bvls', 'scipy.optimize._spectral', 'scipy.optimize.nonlin', 'scipy.optimize._root_scalar', 'scipy.optimize.zeros', 'scipy.optimize._zeros', 'scipy.optimize.nnls', 'scipy.optimize._nnls', 'scipy.optimize._basinhopping', 'scipy.optimize._linprog', 'scipy.optimize._linprog_ip', 'scipy.optimize._linprog_util', 'scipy.optimize._remove_redundancy', 'scipy.optimize._linprog_simplex', 'scipy.optimize._linprog_rs', 'scipy.optimize._bglu_dense', 'scipy.optimize._lsap', 'scipy.optimize._lsap_module', 'scipy.optimize._differentialevolution', 'scipy.optimize._shgo', 'scipy.optimize._shgo_lib', 'scipy.optimize._shgo_lib.sobol_seq', 'scipy.optimize._shgo_lib.triangulation', 'scipy.optimize._dual_annealing', 'scipy.integrate', 'scipy.integrate.quadrature', 'scipy.integrate.odepack', 'scipy.integrate._odepack', 'scipy.integrate.quadpack', 'scipy.integrate._quadpack', 'scipy.integrate._ode', 'scipy.integrate.vode', 'scipy.integrate._dop', 'scipy.integrate.lsoda', 'scipy.integrate._bvp', 'scipy.integrate._ivp', 'scipy.integrate._ivp.ivp', 'scipy.integrate._ivp.bdf', 'scipy.integrate._ivp.common', 'scipy.integrate._ivp.base', 'scipy.integrate._ivp.radau', 'scipy.integrate._ivp.rk', 'scipy.integrate._ivp.dop853_coefficients', 'scipy.integrate._ivp.lsoda', 'scipy.integrate._quad_vec', 'scipy.misc', 'scipy.misc.doccer', 'scipy.misc.common', 'scipy.stats._constants', 'scipy.stats._continuous_distns', 'scipy.interpolate', 'scipy.interpolate.interpolate', 'scipy.interpolate.fitpack', 'scipy.interpolate._fitpack_impl', 'scipy.interpolate._fitpack', 'scipy.interpolate.dfitpack', 'scipy.interpolate._bsplines', 'scipy.interpolate._bspl', 'scipy.interpolate.polyint', 'scipy.interpolate._ppoly', 'scipy.interpolate.fitpack2', 'scipy.interpolate.interpnd', 'scipy.interpolate.rbf', 'scipy.interpolate._cubic', 'scipy.interpolate.ndgriddata', 'scipy.interpolate._pade', 'scipy.stats._stats', 'scipy.stats._tukeylambda_stats', 'scipy.stats._discrete_distns', 'scipy.stats.mstats_basic', 'scipy.stats._stats_mstats_common', 'scipy.stats._rvs_sampling', 'scipy.stats._hypotests', 'scipy.stats.morestats', 'scipy.stats.statlib', 'scipy.stats.contingency', 'scipy.stats._binned_statistic', 'scipy.stats.kde', 'scipy.stats.mvn', 'scipy.stats.mstats', 'scipy.stats.mstats_extras', 'scipy.stats._multivariate', 'sklearn.externals', 'sklearn.externals._scipy_linalg', 'sklearn.utils.validation', 'sklearn.utils._show_versions', 'sklearn.utils._openmp_helpers', 'sklearn.model_selection', 'sklearn.model_selection._split', 'sklearn.utils.multiclass', 'sklearn.model_selection._validation', 'sklearn.utils.metaestimators', 'sklearn.metrics', 'sklearn.metrics._ranking', 'sklearn.utils.extmath', 'sklearn.utils._logistic_sigmoid', 'sklearn.utils.sparsefuncs_fast', '_cython_0_29_14', 'sklearn.utils.sparsefuncs', 'sklearn.preprocessing', 'sklearn.preprocessing._function_transformer', 'sklearn.preprocessing._data', 'sklearn.preprocessing._csr_polynomial_expansion', 'sklearn.preprocessing._encoders', 'sklearn.preprocessing._label', 'sklearn.preprocessing._discretization', 'sklearn.metrics._base', 'sklearn.metrics._classification', 'sklearn.metrics.cluster', 'sklearn.metrics.cluster._supervised', 'sklearn.metrics.cluster._expected_mutual_info_fast', 'sklearn.metrics.cluster._unsupervised', 'sklearn.metrics.pairwise', 'sklearn.utils._mask', 'sklearn.metrics._pairwise_fast', 'sklearn.metrics.cluster._bicluster', 'sklearn.metrics._regression', 'sklearn.metrics._scorer', 'sklearn.metrics._plot', 'sklearn.metrics._plot.roc_curve', 'sklearn.metrics._plot.base', 'sklearn.metrics._plot.precision_recall_curve', 'sklearn.metrics._plot.confusion_matrix', 'sklearn.model_selection._search', 'sklearn.utils.random', 'sklearn.utils._random', 'pymysql', 'pymysql._compat', 'pymysql.constants', 'pymysql.constants.FIELD_TYPE', 'pymysql.converters', 'pymysql.constants.FLAG', 'pymysql.charset', 'pymysql.err', 'pymysql.constants.ER', 'pymysql.times', 'pymysql.connections', 'pymysql._auth', 'pymysql.constants.CLIENT', 'cryptography', 'cryptography.__about__', 'cryptography.hazmat', 'cryptography.hazmat.backends', 'cryptography.hazmat.primitives', 'cryptography.hazmat.primitives.serialization', 'cryptography.hazmat.primitives._serialization', 'cryptography.hazmat.primitives.serialization.base', 'cryptography.hazmat._types', 'cryptography.hazmat.primitives.asymmetric', 'cryptography.hazmat.primitives.asymmetric.dsa', 'cryptography.utils', 'cryptography.hazmat.primitives.hashes', 'cryptography.exceptions', 'cryptography.hazmat.backends.interfaces', 'cryptography.hazmat.primitives.asymmetric.utils', 'cryptography.hazmat._der', 'cryptography.hazmat.primitives.asymmetric.ec', 'cryptography.hazmat._oid', 'cryptography.hazmat.primitives.asymmetric.ed25519', 'cryptography.hazmat.primitives.asymmetric.ed448', 'cryptography.hazmat.primitives.asymmetric.rsa', 'cryptography.hazmat.primitives._asymmetric', 'cryptography.hazmat.primitives.asymmetric.dh', 'cryptography.hazmat.primitives.serialization.ssh', 'cryptography.hazmat.primitives.ciphers', 'cryptography.hazmat.primitives.ciphers.base', 'cryptography.hazmat.primitives._cipheralgorithm', 'cryptography.hazmat.primitives.ciphers.modes', 'cryptography.hazmat.primitives.ciphers.algorithms', 'cryptography.hazmat.primitives.asymmetric.padding', 'pymysql.constants.COMMAND', 'pymysql.constants.CR', 'pymysql.constants.SERVER_STATUS', 'pymysql.cursors', 'pymysql.optionfile', 'pymysql.protocol', 'pymysql.util', 'ssl', 'ipaddress', '_ssl', 'getpass', 'termios', 'classifyer', 'xlrd', 'xlrd.info', 'xlrd.timemachine', 'xlrd.biffh', 'xlrd.formula', 'xlrd.book', 'xlrd.sheet', 'xlrd.formatting', 'xlrd.compdoc', 'xlrd.xldate', 'xlrd.xlsx', 'character_processor', 'pyltp', 'bilstm_attention', 'nlpcda', 'nlpcda.tools', 'nlpcda.tools.Homophone', 'nlpcda.tools.Basetool', 'nlpcda.config', 'jieba', 'jieba.finalseg', 'jieba._compat', 'pkg_resources', 'plistlib', 'xml', 'xml.parsers', 'xml.parsers.expat', 'pyexpat.errors', 'pyexpat.model', 'pyexpat', 'xml.parsers.expat.model', 'xml.parsers.expat.errors', 'email', 'email.parser', 'email.feedparser', 'email.errors', 'email._policybase', 'email.header', 'email.quoprimime', 'email.base64mime', 'email.charset', 'email.encoders', 'quopri', 'email.utils', 'email._parseaddr', 'calendar', 'pkg_resources.extern', 'pkg_resources._vendor', 'pkg_resources._vendor.appdirs', 'pkg_resources.extern.appdirs', 'pkg_resources._vendor.packaging', 'pkg_resources._vendor.packaging.__about__', 'pkg_resources.extern.packaging', 'pkg_resources.extern.packaging.version', 'pkg_resources.extern.packaging._structures', 'pkg_resources.extern.packaging._typing', 'pkg_resources.extern.packaging.specifiers', 'pkg_resources.extern.packaging._compat', 'pkg_resources.extern.packaging.utils', 'pkg_resources.extern.packaging.requirements', 'pkg_resources._vendor.pyparsing', 'pkg_resources.extern.pyparsing', 'pkg_resources.extern.packaging.markers', 'jieba.finalseg.prob_start', 'jieba.finalseg.prob_trans', 'jieba.finalseg.prob_emit', 'nlpcda.tools.Ner', 'nlpcda.tools.Random_delete_char', 'nlpcda.tools.Random_word', 'nlpcda.tools.Similar_word', 'nlpcda.tools.Char_position_exchange', 'nlpcda.tools.Translate', 'requests', 'urllib3', 'urllib3.connectionpool', 'urllib3.exceptions', 'urllib3.packages', 'urllib3.packages.ssl_match_hostname', 'urllib3.packages.six', 'urllib3.packages.six.moves', 'http', 'http.client', 'email.message', 'uu', 'email._encoded_words', 'email.iterators', 'urllib3.packages.six.moves.http_client', 'urllib3.connection', 'urllib3.util', 'urllib3.util.connection', 'urllib3.util.wait', 'urllib3.contrib', 'urllib3.contrib._appengine_environ', 'urllib3.util.request', 'urllib3.util.response', 'urllib3.util.ssl_', 'urllib3.util.url', 'urllib3.util.timeout', 'urllib3.util.retry', 'urllib3._collections', 'urllib3.request', 'urllib3.filepost', 'urllib3.fields', 'mimetypes', 'urllib3.packages.six.moves.urllib', 'urllib3.packages.six.moves.urllib.parse', 'urllib3.response', 'urllib3.util.queue', 'urllib3.poolmanager', 'chardet', 'chardet.compat', 'chardet.universaldetector', 'chardet.charsetgroupprober', 'chardet.enums', 'chardet.charsetprober', 'chardet.escprober', 'chardet.codingstatemachine', 'chardet.escsm', 'chardet.latin1prober', 'chardet.mbcsgroupprober', 'chardet.utf8prober', 'chardet.mbcssm', 'chardet.sjisprober', 'chardet.mbcharsetprober', 'chardet.chardistribution', 'chardet.euctwfreq', 'chardet.euckrfreq', 'chardet.gb2312freq', 'chardet.big5freq', 'chardet.jisfreq', 'chardet.jpcntx', 'chardet.eucjpprober', 'chardet.gb2312prober', 'chardet.euckrprober', 'chardet.cp949prober', 'chardet.big5prober', 'chardet.euctwprober', 'chardet.sbcsgroupprober', 'chardet.sbcharsetprober', 'chardet.langcyrillicmodel', 'chardet.langgreekmodel', 'chardet.langbulgarianmodel', 'chardet.langthaimodel', 'chardet.langhebrewmodel', 'chardet.hebrewprober', 'chardet.langturkishmodel', 'chardet.version', 'requests.exceptions', 'urllib3.contrib.pyopenssl', 'OpenSSL', 'OpenSSL.crypto', 'six', 'cryptography.x509', 'cryptography.x509.certificate_transparency', 'cryptography.x509.base', 'cryptography.x509.extensions', 'cryptography.hazmat.primitives.constant_time', 'cryptography.x509.general_name', 'cryptography.x509.name', 'cryptography.x509.oid', 'OpenSSL._util', 'cryptography.hazmat.bindings', 'cryptography.hazmat.bindings.openssl', 'cryptography.hazmat.bindings.openssl.binding', '_cffi_backend', '_openssl.lib', '_openssl', 'cryptography.hazmat.bindings._openssl', 'cryptography.hazmat.bindings.openssl._conditional', 'OpenSSL.SSL', 'OpenSSL.version', 'cryptography.hazmat.backends.openssl', 'cryptography.hazmat.backends.openssl.backend', 'cryptography.hazmat.backends.openssl.aead', 'cryptography.hazmat.backends.openssl.ciphers', 'cryptography.hazmat.backends.openssl.cmac', 'cryptography.hazmat.backends.openssl.decode_asn1', 'cryptography.hazmat.backends.openssl.dh', 'cryptography.hazmat.backends.openssl.dsa', 'cryptography.hazmat.backends.openssl.utils', 'cryptography.hazmat.backends.openssl.ec', 'cryptography.hazmat.backends.openssl.ed25519', 'cryptography.hazmat.backends.openssl.ed448', 'cryptography.hazmat.backends.openssl.encode_asn1', 'cryptography.hazmat.backends.openssl.hashes', 'cryptography.hazmat.backends.openssl.hmac', 'cryptography.hazmat.backends.openssl.ocsp', 'cryptography.hazmat.backends.openssl.x509', 'cryptography.hazmat.backends.openssl.rsa', 'cryptography.x509.ocsp', 'cryptography.hazmat.backends.openssl.poly1305', 'cryptography.hazmat.backends.openssl.x25519', 'cryptography.hazmat.primitives.asymmetric.x25519', 'cryptography.hazmat.backends.openssl.x448', 'cryptography.hazmat.primitives.asymmetric.x448', 'cryptography.hazmat.primitives.kdf', 'cryptography.hazmat.primitives.kdf.scrypt', 'cryptography.hazmat.primitives.serialization.pkcs7', 'urllib3.packages.backports', 'urllib3.packages.backports.makefile', 'requests.__version__', 'requests.utils', 'requests.certs', 'certifi', 'certifi.core', 'requests._internal_utils', 'requests.compat', 'urllib.request', 'urllib.error', 'urllib.response', '_scproxy', 'http.cookiejar', 'http.cookies', 'requests.cookies', 'requests.structures', 'requests.packages', 'requests.packages.urllib3', 'requests.packages.urllib3.connectionpool', 'requests.packages.urllib3.exceptions', 'requests.packages.urllib3.packages', 'requests.packages.urllib3.packages.ssl_match_hostname', 'requests.packages.urllib3.packages.six', 'requests.packages.urllib3.packages.six.moves', 'requests.packages.urllib3.packages.six.moves.http_client', 'requests.packages.urllib3.connection', 'requests.packages.urllib3.util', 'requests.packages.urllib3.util.connection', 'requests.packages.urllib3.util.wait', 'requests.packages.urllib3.contrib', 'requests.packages.urllib3.contrib._appengine_environ', 'requests.packages.urllib3.util.request', 'requests.packages.urllib3.util.response', 'requests.packages.urllib3.util.ssl_', 'requests.packages.urllib3.util.url', 'requests.packages.urllib3.util.timeout', 'requests.packages.urllib3.util.retry', 'requests.packages.urllib3._collections', 'requests.packages.urllib3.request', 'requests.packages.urllib3.filepost', 'requests.packages.urllib3.fields', 'requests.packages.urllib3.packages.six.moves.urllib', 'requests.packages.urllib3.packages.six.moves.urllib.parse', 'requests.packages.urllib3.response', 'requests.packages.urllib3.util.queue', 'requests.packages.urllib3.poolmanager', 'requests.packages.urllib3.contrib.pyopenssl', 'requests.packages.urllib3.packages.backports', 'requests.packages.urllib3.packages.backports.makefile', 'idna', 'idna.package_data', 'idna.core', 'idna.idnadata', 'unicodedata', 'idna.intranges', 'requests.packages.idna', 'requests.packages.idna.package_data', 'requests.packages.idna.core', 'requests.packages.idna.idnadata', 'requests.packages.idna.intranges', 'requests.packages.chardet', 'requests.packages.chardet.compat', 'requests.packages.chardet.universaldetector', 'requests.packages.chardet.charsetgroupprober', 'requests.packages.chardet.enums', 'requests.packages.chardet.charsetprober', 'requests.packages.chardet.escprober', 'requests.packages.chardet.codingstatemachine', 'requests.packages.chardet.escsm', 'requests.packages.chardet.latin1prober', 'requests.packages.chardet.mbcsgroupprober', 'requests.packages.chardet.utf8prober', 'requests.packages.chardet.mbcssm', 'requests.packages.chardet.sjisprober', 'requests.packages.chardet.mbcharsetprober', 'requests.packages.chardet.chardistribution', 'requests.packages.chardet.euctwfreq', 'requests.packages.chardet.euckrfreq', 'requests.packages.chardet.gb2312freq', 'requests.packages.chardet.big5freq', 'requests.packages.chardet.jisfreq', 'requests.packages.chardet.jpcntx', 'requests.packages.chardet.eucjpprober', 'requests.packages.chardet.gb2312prober', 'requests.packages.chardet.euckrprober', 'requests.packages.chardet.cp949prober', 'requests.packages.chardet.big5prober', 'requests.packages.chardet.euctwprober', 'requests.packages.chardet.sbcsgroupprober', 'requests.packages.chardet.sbcharsetprober', 'requests.packages.chardet.langcyrillicmodel', 'requests.packages.chardet.langgreekmodel', 'requests.packages.chardet.langbulgarianmodel', 'requests.packages.chardet.langthaimodel', 'requests.packages.chardet.langhebrewmodel', 'requests.packages.chardet.hebrewprober', 'requests.packages.chardet.langturkishmodel', 'requests.packages.chardet.version', 'requests.models', 'encodings.idna', 'stringprep', 'requests.hooks', 'requests.auth', 'requests.status_codes', 'requests.api', 'requests.sessions', 'requests.adapters', 'nlpcda.tools.Equivalent_char', 'nlpcda.tools.Simbert', 'nlpcda.tools.simbert', 'nlpcda.tools.simbert.generator', 'bert4keras', 'bert4keras.backend', 'distutils.util', 'distutils.errors', 'distutils.dep_util', 'distutils.spawn', 'distutils.debug', 'distutils.log', 'distutils.sysconfig', 'tensorflow', 'tensorflow._api', 'tensorflow.python', 'tensorflow.tools', 'tensorflow.core', 'tensorflow.compiler', 'tensorflow.lite', 'tensorflow.keras', 'tensorflow.compat', 'tensorflow.summary', 'tensorflow.examples', 'tensorflow.estimator', 'tensorflow_core', 'tensorflow_core.python', 'tensorflow_core.python.pywrap_tensorflow', 'tensorflow.python.platform', 'tensorflow.python.platform.self_check', 'tensorflow.python.platform.build_info', 'tensorflow.python.pywrap_tensorflow_internal', 'imp', 'swig_runtime_data4', '_pywrap_tensorflow_internal', 'tensorflow_core.python._pywrap_utils', 'tensorflow_core.python._pywrap_tfprof', 'tensorflow_core.python._pywrap_events_writer', 'tensorflow_core.python._pywrap_util_port', 'tensorflow_core.python._pywrap_stat_summarizer', 'tensorflow_core.python._pywrap_py_exception_registry', 'tensorflow_core.python._pywrap_kernel_registry', 'tensorflow_core.python._pywrap_quantize_training', 'tensorflow_core.python._pywrap_scoped_annotation', 'tensorflow_core.python._pywrap_transform_graph', 'tensorflow_core.python._pywrap_traceme', 'tensorflow_core.python._pywrap_stacktrace_handler', 'tensorflow_core.core', 'tensorflow.core.framework', 'tensorflow.core.framework.graph_pb2', 'google.protobuf', 'google.protobuf.descriptor', 'google.protobuf.internal', 'google.protobuf.internal.api_implementation', 'google.protobuf.internal._api_implementation', 'google.protobuf.pyext', 'google.protobuf.internal.containers', 'google.protobuf.internal.enum_type_wrapper', 'google.protobuf.message', 'google.protobuf.pyext._message', 'google.protobuf.reflection', 'google.protobuf.message_factory', 'google.protobuf.descriptor_pool', 'google.protobuf.descriptor_database', 'google.protobuf.text_encoding', 'google.protobuf.pyext.cpp_message', 'google.protobuf.symbol_database', 'tensorflow.core.framework.node_def_pb2', 'tensorflow.core.framework.attr_value_pb2', 'tensorflow.core.framework.tensor_pb2', 'tensorflow.core.framework.resource_handle_pb2', 'tensorflow.core.framework.tensor_shape_pb2', 'google.protobuf.internal.well_known_types', 'tensorflow.core.framework.types_pb2', 'tensorflow.core.framework.function_pb2', 'tensorflow.core.framework.op_def_pb2', 'tensorflow.core.framework.versions_pb2', 'tensorflow.core.framework.summary_pb2', 'tensorflow.core.protobuf', 'tensorflow.core.protobuf.meta_graph_pb2', 'google.protobuf.any_pb2', 'tensorflow.core.protobuf.saved_object_graph_pb2', 'tensorflow.core.protobuf.trackable_object_graph_pb2', 'tensorflow.core.protobuf.struct_pb2', 'tensorflow.core.framework.variable_pb2', 'tensorflow.core.protobuf.saver_pb2', 'tensorflow.core.protobuf.config_pb2', 'tensorflow.core.framework.cost_graph_pb2', 'tensorflow.core.framework.step_stats_pb2', 'tensorflow.core.framework.allocation_description_pb2', 'tensorflow.core.framework.tensor_description_pb2', 'tensorflow.core.protobuf.cluster_pb2', 'tensorflow.core.protobuf.debug_pb2', 'tensorflow.core.protobuf.rewriter_config_pb2', 'tensorflow.core.protobuf.verifier_config_pb2', 'tensorflow.core.protobuf.tensorflow_server_pb2', 'tensorflow.core.util', 'tensorflow.core.util.event_pb2', 'tensorflow.python.framework', 'tensorflow.python.framework.framework_lib', 'tensorflow.python.framework.device', 'tensorflow_core.python.tf2', 'tensorflow.python.framework.device_spec', 'tensorflow.python.util', 'tensorflow.python.util.tf_export', 'tensorflow.python.util.tf_decorator', 'tensorflow.python.util.tf_stack', 'tensorflow_core.python._tf_stack', 'tensorflow.python.util.tf_inspect', 'tensorflow.python.framework.ops', 'six.moves', 'tensorflow.python.eager', 'tensorflow.python.eager.context', 'absl', 'absl.logging', 'absl.flags', 'getopt', 'absl.flags._argument_parser', 'csv', '_csv', 'absl.flags._helpers', 'fcntl', 'absl.flags._defines', 'absl.flags._exceptions', 'absl.flags._flag', 'absl._collections_abc', 'absl.flags._flagvalues', 'xml.dom', 'xml.dom.domreg', 'xml.dom.minidom', 'xml.dom.minicompat', 'xml.dom.xmlbuilder', 'xml.dom.NodeFilter', 'absl.flags._validators', 'absl.logging.converter', 'tensorflow.python.eager.executor', 'tensorflow.python.eager.monitoring', 'tensorflow.python.framework.c_api_util', 'tensorflow.core.framework.api_def_pb2', 'tensorflow.python.util.compat', 'tensorflow.python.util.tf_contextlib', 'tensorflow.python.util.is_in_graph_mode', 'tensorflow.python.eager.core', 'tensorflow.python.framework.errors', 'tensorflow.python.framework.errors_impl', 'tensorflow.core.lib', 'tensorflow.core.lib.core', 'tensorflow.core.lib.core.error_codes_pb2', 'tensorflow.core.protobuf.error_codes_pb2', 'tensorflow.python.framework.error_interpolation', 'tensorflow.core.protobuf.graph_debug_info_pb2', 'tensorflow.python.util.deprecation', 'tensorflow.python.platform.tf_logging', 'tensorflow.python.util.decorator_utils', 'tensorflow.python.eager.tape', 'tensorflow.python.util.lazy_loader', 'tensorflow.python.framework.composite_tensor', 'tensorflow.python.util.nest', 'wrapt', 'wrapt.wrappers', 'wrapt._wrappers', 'wrapt.decorators', 'wrapt.importer', 'tensorflow.python.framework.dtypes', 'tensorflow.python.framework.indexed_slices', 'tensorflow.python.framework.tensor_conversion_registry', 'tensorflow.python.framework.tensor_like', 'tensorflow.python.framework.tensor_shape', 'tensorflow.python.framework.type_spec', 'tensorflow.python.framework.registry', 'tensorflow.python.framework.traceable_stack', 'tensorflow.python.framework.versions', 'tensorflow.python.ops', 'tensorflow.python.ops.control_flow_util', 'tensorflow.python.platform.app', 'absl.app', 'pdb', 'cmd', 'code', 'codeop', 'absl.command_name', 'faulthandler', 'tensorflow.python.platform.flags', 'tensorflow.python.util.function_utils', 'tensorflow.python.util.lock_util', 'tensorflow.python.util.memory', 'tensorflow.python.util.object_identity', 'tensorflow_core.tools', 'tensorflow.tools.docs', 'tensorflow.tools.docs.doc_controls', 'tensorflow.python.framework.sparse_tensor', 'tensorflow.python.framework.constant_op', 'tensorflow.python.eager.execute', 'google.protobuf.text_format', 'encodings.raw_unicode_escape', 'encodings.unicode_escape', 'google.protobuf.internal.decoder', 'google.protobuf.internal.encoder', 'google.protobuf.internal.wire_format', 'google.protobuf.internal.type_checkers', 'tensorflow.python.framework.tensor_util', 'tensorflow.python.framework.fast_tensor_util', 'tensorflow.python.framework.tensor_spec', 'tensorflow.python.framework.common_shapes', 'tensorflow.python.ops.gen_sparse_ops', 'tensorflow.python.framework.op_def_registry', 'tensorflow_core.python._op_def_registry', 'tensorflow.python.framework.op_def_library', 'tensorflow.python.framework.op_callbacks', 'tensorflow.python.util.dispatch', 'tensorflow.python.framework.random_seed', 'tensorflow.python.framework.importer', 'tensorflow.python.framework.function', 'tensorflow.python.framework.graph_to_function_def', 'tensorflow.python.ops.array_ops', 'tensorflow.python.compat', 'tensorflow.python.compat.compat', 'tensorflow.python.ops.gen_array_ops', 'tensorflow.python.ops.gen_math_ops', 'tensorflow.python.ops.resource_variable_ops', 'tensorflow.python.framework.cpp_shape_inference_pb2', 'tensorflow.python.ops.gen_logging_ops', 'tensorflow.python.ops.gen_resource_variable_ops', 'tensorflow.python.ops.gen_state_ops', 'tensorflow.python.ops.math_ops', 'tensorflow.python.framework.graph_util', 'tensorflow.python.framework.graph_util_impl', 'tensorflow.python.ops.gen_data_flow_ops', 'tensorflow.python.ops.gen_nn_ops', 'tensorflow.python.ops.state_ops', 'tensorflow.python.ops.variables', 'tensorflow.python.ops.control_flow_ops', 'tensorflow.core.protobuf.control_flow_pb2', 'tensorflow.python.ops.gen_control_flow_ops', 'tensorflow.python.ops.tensor_array_ops', 'tensorflow.python.ops.list_ops', 'tensorflow.python.ops.gen_list_ops', 'tensorflow.python.util.tf_should_use', 'tensorflow.python.training', 'tensorflow.python.training.tracking', 'tensorflow.python.training.tracking.base', 'tensorflow.python.ops.gen_io_ops', 'tensorflow.python.training.saving', 'tensorflow.python.training.saving.saveable_object', 'tensorflow.python.ops.variable_scope', 'tensorflow.python.client', 'tensorflow.python.client.session', 'tensorflow.python.ops.session_ops', 'tensorflow.python.training.experimental', 'tensorflow.python.training.experimental.mixed_precision_global_state', 'tensorflow.python.ops.init_ops', 'tensorflow.python.ops.gen_linalg_ops', 'tensorflow.python.ops.linalg_ops_impl', 'tensorflow.python.ops.random_ops', 'tensorflow.python.ops.gen_random_ops', 'tensorflow.python.framework.load_library', 'tensorflow.python.lib', 'tensorflow.python.lib.io', 'tensorflow.python.lib.io.file_io', 'tensorflow.python.framework.config', 'tensorflow.python.client.client_lib', 'tensorflow.python.ops.standard_ops', 'tensorflow_core.python.autograph', 'tensorflow.python.autograph', 'tensorflow.python.autograph.operators', 'tensorflow.python.autograph.operators.control_flow', 'tensorflow.python.autograph.operators.py_builtins', 'tensorflow.python.autograph.utils', 'tensorflow.python.autograph.utils.context_managers', 'tensorflow.python.autograph.utils.misc', 'tensorflow.python.autograph.utils.py_func', 'tensorflow.python.ops.script_ops', 'tensorflow_core.python._pywrap_py_func', 'tensorflow.python.eager.backprop', 'tensorflow.python.eager.backprop_util', 'tensorflow.python.eager.imperative_grad', 'tensorflow.python.ops.unconnected_gradients', 'tensorflow.python.ops.check_ops', 'tensorflow.python.ops.default_gradient', 'tensorflow.python.framework.func_graph', 'tensorflow.python.eager.graph_only_ops', 'tensorflow.python.framework.auto_control_deps', 'tensorflow.python.ops.custom_gradient', 'tensorflow.python.ops.op_selector', 'tensorflow.python.ops.gen_script_ops', 'tensorflow.python.autograph.utils.tensor_list', 'tensorflow.python.autograph.utils.testing', 'tensorflow.python.autograph.utils.type_check', 'tensorflow.python.autograph.utils.tensors', 'tensorflow.python.data', 'tensorflow.python.data.experimental', 'tensorflow.python.data.experimental.ops', 'tensorflow.python.data.experimental.ops.batching', 'tensorflow.python.data.ops', 'tensorflow.python.data.ops.dataset_ops', 'tensorflow.python.data.experimental.ops.distribute_options', 'tensorflow.python.data.util', 'tensorflow.python.data.util.options', 'tensorflow.python.data.experimental.ops.optimization_options', 'tensorflow.python.data.experimental.ops.stats_options', 'tensorflow.python.data.experimental.ops.stats_aggregator', 'tensorflow.python.ops.gen_experimental_dataset_ops', 'tensorflow.python.ops.summary_ops_v2', 'tensorflow.python.eager.profiler', 'tensorflow.python.platform.gfile', 'tensorflow.python.framework.smart_cond', 'tensorflow.python.ops.gen_summary_ops', 'tensorflow.python.ops.summary_op_util', 'tensorflow.python.training.training_util', 'tensorflow.python.framework.graph_io', 'tensorflow.python.data.experimental.ops.threading_options', 'tensorflow.python.data.ops.iterator_ops', 'tensorflow.python.data.ops.optional_ops', 'tensorflow.python.data.util.structure', 'tensorflow.python.data.util.nest', 'tensorflow.python.ops.ragged', 'tensorflow.python.ops.ragged.ragged_array_ops', 'tensorflow.python.ops.sort_ops', 'tensorflow.python.ops.nn_ops', 'tensorflow.python.ops.ragged.ragged_functional_ops', 'tensorflow.python.ops.ragged.ragged_config', 'tensorflow.python.ops.ragged.ragged_tensor', 'tensorflow.python.ops.gen_ragged_conversion_ops', 'tensorflow.python.ops.ragged.ragged_tensor_value', 'tensorflow.python.ops.ragged.ragged_util', 'tensorflow.python.ops.gen_ragged_math_ops', 'tensorflow.python.ops.ragged.segment_id_ops', 'tensorflow.python.ops.ragged.ragged_math_ops', 'tensorflow.python.ops.ragged.ragged_batch_gather_ops', 'tensorflow.python.ops.ragged.ragged_gather_ops', 'tensorflow.python.ops.gen_ragged_array_ops', 'tensorflow.python.ops.ragged.ragged_batch_gather_with_default_op', 'tensorflow.python.ops.ragged.ragged_dispatch', 'tensorflow.python.ops.clip_ops', 'tensorflow.python.ops.data_flow_ops', 'tensorflow.python.lib.io.python_io', 'tensorflow.python.lib.io.tf_record', 'tensorflow.python.ops.gen_bitwise_ops', 'tensorflow.python.ops.parsing_ops', 'tensorflow.python.ops.gen_parsing_ops', 'tensorflow.python.ops.parsing_config', 'tensorflow.python.ops.sparse_ops', 'tensorflow.python.ops.string_ops', 'tensorflow.python.ops.gen_string_ops', 'tensorflow.python.ops.ragged.ragged_concat_ops', 'tensorflow.python.ops.ragged.ragged_squeeze_op', 'tensorflow.python.ops.ragged.ragged_string_ops', 'tensorflow.python.ops.ragged.ragged_tensor_shape', 'tensorflow.python.ops.ragged.ragged_where_op', 'tensorflow.python.ops.ragged.ragged_operators', 'tensorflow.python.ops.ragged.ragged_getitem', 'tensorflow.python.ops.ragged.ragged_conversion_ops', 'tensorflow.python.ops.ragged.ragged_factory_ops', 'tensorflow.python.ops.ragged.ragged_map_ops', 'tensorflow.python.ops.gen_dataset_ops', 'tensorflow.python.training.saver', 'tensorflow.python.framework.meta_graph', 'tensorflow.python.ops.io_ops', 'tensorflow.python.training.checkpoint_management', 'tensorflow.python.training.checkpoint_state_pb2', 'tensorflow.python.training.py_checkpoint_reader', 'tensorflow.python._pywrap_checkpoint_reader', 'tensorflow.python.training.saving.saveable_object_util', 'tensorflow.python.data.util.random_seed', 'tensorflow.python.data.util.sparse', 'tensorflow.python.data.util.traverse', 'tensorflow.python.eager.function', 'tensorflow.python.eager.forwardprop_util', 'tensorflow.python.ops.functional_ops', 'tensorflow.python.ops.gen_functional_ops', 'tensorflow.python.ops.gradients_util', 'tensorflow.python.ops.control_flow_state', 'tensorflow.python.training.tracking.tracking', 'tensorflow.python.eager.def_function', 'tensorflow.python.eager.lift_to_graph', 'tensorflow.python.training.tracking.data_structures', 'tensorflow.python.saved_model', 'tensorflow.python.saved_model.revived_types', 'tensorflow.python.training.tracking.layer_utils', 'tensorflow.python.data.util.convert', 'tensorflow.python.data.experimental.ops.cardinality', 'tensorflow.python.data.experimental.ops.counter', 'tensorflow.python.data.experimental.ops.scan_ops', 'tensorflow.python.data.experimental.ops.enumerate_ops', 'tensorflow.python.data.experimental.ops.error_ops', 'tensorflow.python.data.experimental.ops.get_single_element', 'tensorflow.python.data.experimental.ops.grouping', 'tensorflow.python.data.experimental.ops.interleave_ops', 'tensorflow.python.data.experimental.ops.random_ops', 'tensorflow.python.data.ops.readers', 'tensorflow.python.ops.gen_stateless_random_ops', 'tensorflow.python.data.experimental.ops.iterator_ops', 'tensorflow.python.training.basic_session_run_hooks', 'tensorflow.python.client.timeline', 'tensorflow.python.training.session_run_hook', 'tensorflow.python.training.summary_io', 'tensorflow.python.summary', 'tensorflow.python.summary.summary_iterator', 'tensorflow.python.summary.writer', 'tensorflow.python.summary.writer.writer', 'tensorflow.python.summary.plugin_asset', 'tensorflow.python.summary.writer.event_file_writer', 'tensorflow.python.summary.writer.event_file_writer_v2', 'tensorflow.python.summary.writer.writer_cache', 'tensorflow.python.data.experimental.ops.parsing_ops', 'tensorflow.python.data.experimental.ops.prefetching_ops', 'tensorflow.python.data.experimental.ops.readers', 'gzip', 'tensorflow.python.data.experimental.ops.resampling', 'tensorflow.python.ops.logging_ops', 'tensorflow.python.data.experimental.ops.shuffle_ops', 'tensorflow.python.data.experimental.ops.stats_ops', 'tensorflow.python.data.experimental.ops.take_while_ops', 'tensorflow.python.data.experimental.ops.unique', 'tensorflow.python.data.experimental.ops.writers', 'tensorflow.python.util.all_util', 'tensorflow.python.autograph.operators.special_values', 'tensorflow.python.autograph.utils.ag_logging', 'tensorflow.python.autograph.operators.data_structures', 'tensorflow.python.autograph.operators.exceptions', 'tensorflow.python.autograph.operators.logical', 'tensorflow.python.autograph.operators.slices', 'tensorflow.python.autograph.core', 'tensorflow.python.autograph.core.converter', 'tensorflow.python.autograph.pyct', 'tensorflow.python.autograph.pyct.anno', 'gast', 'gast.gast', 'gast.ast3', 'gast.astn', 'tensorflow.python.autograph.pyct.ast_util', 'tensorflow.python.autograph.pyct.parser', 'tensorflow.python.autograph.pyct.inspect_utils', 'tensorflow.python.autograph.pyct.cfg', 'tensorflow.python.autograph.pyct.compiler', 'astor', 'astor.code_gen', 'astor.op_util', 'astor.node_util', 'astor.string_repr', 'astor.source_repr', 'astor.file_util', 'astor.tree_walk', 'tensorflow.python.autograph.pyct.origin_info', 'tensorflow.python.autograph.pyct.pretty_printer', 'termcolor', 'tensorflow.python.autograph.pyct.qual_names', 'tensorflow.python.autograph.pyct.templates', 'tensorflow.python.autograph.pyct.transformer', 'tensorflow.python.autograph.pyct.static_analysis', 'tensorflow.python.autograph.pyct.static_analysis.activity', 'tensorflow.python.autograph.pyct.static_analysis.annos', 'tensorflow.python.autograph.pyct.static_analysis.liveness', 'tensorflow.python.autograph.pyct.static_analysis.reaching_definitions', 'tensorflow.python.autograph.impl', 'tensorflow.python.autograph.impl.api', 'tensorflow.python.autograph.core.ag_ctx', 'tensorflow.python.autograph.impl.conversion', 'tensorflow.python.autograph.converters', 'tensorflow.python.autograph.converters.arg_defaults', 'tensorflow.python.autograph.converters.asserts', 'tensorflow.python.autograph.converters.break_statements', 'tensorflow.python.autograph.converters.call_trees', 'tensorflow.python.autograph.converters.conditional_expressions', 'tensorflow.python.autograph.converters.continue_statements', 'tensorflow.python.autograph.converters.control_flow', 'tensorflow.python.autograph.converters.directives', 'tensorflow.python.autograph.lang', 'tensorflow.python.autograph.lang.directives', 'tensorflow.python.autograph.converters.function_scopes', 'tensorflow.python.autograph.converters.lists', 'tensorflow.python.autograph.converters.logical_expressions', 'tensorflow.python.autograph.converters.return_statements', 'tensorflow.python.autograph.converters.slices', 'tensorflow.python.autograph.core.config', 'tensorflow.python.autograph.core.config_lib', 'tensorflow.python.autograph.core.function_wrappers', 'tensorflow.python.autograph.core.naming', 'tensorflow.python.autograph.core.unsupported_features_checker', 'tensorflow.python.autograph.lang.special_functions', 'tensorflow.python.autograph.pyct.errors', 'tensorflow.python.training.experimental.loss_scaling_gradient_tape', 'tensorflow.python.distribute', 'tensorflow.python.distribute.cluster_resolver', 'tensorflow.python.distribute.cluster_resolver.cluster_resolver', 'tensorflow.python.training.server_lib', 'tensorflow.python.distribute.cluster_resolver.gce_cluster_resolver', 'tensorflow.python.distribute.cluster_resolver.kubernetes_cluster_resolver', 'tensorflow.python.distribute.cluster_resolver.slurm_cluster_resolver', 'tensorflow.python.distribute.cluster_resolver.tfconfig_cluster_resolver', 'tensorflow.python.distribute.cluster_resolver.tpu_cluster_resolver', 'six.moves.urllib', 'six.moves.urllib.error', 'six.moves.urllib.request', 'tensorflow.python.distribute.cross_device_ops', 'tensorflow.python.client.device_lib', 'tensorflow.core.framework.device_attributes_pb2', 'tensorflow_core.python._pywrap_device_lib', 'tensorflow.python.distribute.cross_device_utils', 'tensorflow.python.distribute.all_reduce', 'tensorflow.python.ops.nccl_ops', 'tensorflow.python.ops.gen_nccl_ops', 'tensorflow.python.distribute.values', 'tensorflow.python.distribute.device_util', 'tensorflow.python.distribute.distribute_lib', 'tensorflow.python.distribute.distribution_strategy_context', 'tensorflow.python.distribute.numpy_dataset', 'tensorflow.python.distribute.reduce_util', 'tensorflow.python.ops.losses', 'tensorflow.python.ops.losses.loss_reduction', 'tensorflow.python.ops.losses.losses_impl', 'tensorflow.python.ops.confusion_matrix', 'tensorflow.python.ops.nn', 'tensorflow.python.ops.ctc_ops', 'tensorflow.python.ops.gen_ctc_ops', 'tensorflow.python.ops.inplace_ops', 'tensorflow.python.ops.linalg_ops', 'tensorflow.python.ops.map_fn', 'tensorflow.python.ops.nn_grad', 'tensorflow.python.ops.embedding_ops', 'tensorflow.python.ops.data_flow_grad', 'tensorflow.python.ops.nn_impl', 'tensorflow.python.ops.candidate_sampling_ops', 'tensorflow.python.ops.gen_candidate_sampling_ops', 'tensorflow.python.ops.losses.util', 'tensorflow.python.ops.weights_broadcast_ops', 'tensorflow.python.ops.sets', 'tensorflow.python.ops.sets_impl', 'tensorflow.python.ops.gen_set_ops', 'tensorflow.python.ops.collective_ops', 'tensorflow.python.ops.gen_collective_ops', 'tensorflow.python.framework.kernels', 'tensorflow.core.framework.kernel_def_pb2', 'tensorflow.python.distribute.mirrored_strategy', 'tensorflow.python.distribute.input_lib', 'tensorflow.python.data.experimental.ops.distribute', 'tensorflow.python.data.ops.multi_device_iterator_ops', 'tensorflow.python.distribute.input_ops', 'tensorflow.python.distribute.multi_worker_util', 'tensorflow.python.distribute.distribute_coordinator_context', 'tensorflow.python.distribute.shared_variable_creator', 'tensorflow.python.training.coordinator', 'tensorflow.python.distribute.one_device_strategy', 'tensorflow.python.distribute.experimental', 'tensorflow.python.distribute.central_storage_strategy', 'tensorflow.python.distribute.parameter_server_strategy', 'tensorflow.python.training.device_setter', 'tensorflow.python.distribute.collective_all_reduce_strategy', 'tensorflow.python.distribute.tpu_strategy', 'tensorflow.python.tpu', 'tensorflow.python.tpu.device_assignment', 'tensorflow.python.tpu.topology', 'tensorflow.core.protobuf.tpu', 'tensorflow.core.protobuf.tpu.topology_pb2', 'tensorflow.python.tpu.tpu', 'tensorflow.core.protobuf.tpu.dynamic_padding_pb2', 'tensorflow.python.compiler', 'tensorflow.python.compiler.xla', 'tensorflow.python.compiler.xla.jit', 'tensorflow.python.compiler.xla.xla', 'tensorflow_core.compiler', 'tensorflow.compiler.jit', 'tensorflow.compiler.jit.ops', 'tensorflow.compiler.jit.ops.xla_ops', 'tensorflow.compiler.jit.ops.xla_ops_grad', 'tensorflow.python.distribute.summary_op_util', 'tensorflow.python.tpu.tpu_function', 'tensorflow.python.tpu.ops', 'tensorflow.python.tpu.ops.tpu_ops', 'tensorflow.python.ops.gen_tpu_ops', 'tensorflow.python.tpu.tpu_strategy_util', 'tensorflow.python.tpu.tpu_system_metadata', 'tensorflow.python.tpu.training_loop', 'tensorflow.python.tpu.tensor_tracer', 'tensorflow.python.platform.analytics', 'tensorflow.python.tpu.tensor_tracer_flags', 'tensorflow.python.tpu.tensor_tracer_report', 'tensorflow.python.tpu.tensor_tracer_pb2', 'tensorflow.python.training.experimental.loss_scale', 'tensorflow.python.ops.array_grad', 'tensorflow.python.ops.cudnn_rnn_grad', 'tensorflow.python.ops.gen_cudnn_rnn_ops', 'tensorflow.python.ops.manip_grad', 'tensorflow.python.ops.manip_ops', 'tensorflow.python.ops.gen_manip_ops', 'tensorflow.python.ops.math_grad', 'tensorflow.python.ops.random_grad', 'tensorflow.python.ops.rnn_grad', 'tensorflow.python.ops.gen_rnn_ops', 'tensorflow.python.ops.sparse_grad', 'tensorflow.python.ops.state_grad', 'tensorflow.python.ops.tensor_array_grad', 'tensorflow.python.ops.special_math_ops', 'opt_einsum', 'opt_einsum.blas', 'opt_einsum.helpers', 'opt_einsum.parser', 'opt_einsum.paths', 'opt_einsum.path_random', 'opt_einsum.contract', 'opt_einsum.backends', 'opt_einsum.backends.cupy', 'opt_einsum.sharing', 'opt_einsum.backends.dispatch', 'opt_einsum.backends.object_arrays', 'opt_einsum.backends.jax', 'opt_einsum.backends.tensorflow', 'opt_einsum.backends.theano', 'opt_einsum.backends.torch', 'opt_einsum._version', 'tensorflow.compiler.tf2xla', 'tensorflow.compiler.tf2xla.ops', 'tensorflow.compiler.tf2xla.ops.gen_xla_ops', 'tensorflow.python.eager.wrap_function', 'tensorflow.python.saved_model.nested_structure_coder', 'tensorflow.python.ops.batch_ops', 'tensorflow.python.ops.gen_batch_ops', 'tensorflow.python.ops.critical_section_ops', 'tensorflow.python.ops.gradients', 'tensorflow.python.eager.forwardprop', 'tensorflow.python.ops.gradients_impl', 'tensorflow.python.ops.control_flow_grad', 'tensorflow.python.ops.image_grad', 'tensorflow.python.ops.gen_image_ops', 'tensorflow.python.ops.linalg_grad', 'tensorflow.python.ops.linalg', 'tensorflow.python.ops.linalg.linalg_impl', 'tensorflow.python.ops.linalg.linear_operator_util', 'tensorflow.python.module', 'tensorflow.python.module.module', 'tensorflow.python.ops.optional_grad', 'tensorflow.python.ops.histogram_ops', 'tensorflow.python.ops.lookup_ops', 'tensorflow.python.ops.gen_lookup_ops', 'tensorflow.python.ops.numerics', 'tensorflow.python.ops.partitioned_variables', 'tensorflow.python.ops.proto_ops', 'tensorflow.python.ops.gen_decode_proto_ops', 'tensorflow.python.ops.gen_encode_proto_ops', 'tensorflow.python.ops.stateless_random_ops', 'tensorflow.python.ops.template', 'tensorflow.python.training.tracking.util', 'tensorflow.python.training.saving.functional_saver', 'tensorflow.python.training.tracking.graph_view', 'tensorflow.python.training.optimizer', 'tensorflow.python.training.slot_creator', 'tensorflow.python.ops.parallel_for', 'tensorflow.python.ops.parallel_for.control_flow_ops', 'tensorflow.python.ops.parallel_for.pfor', 'tensorflow.compiler.tf2xla.python', 'tensorflow.compiler.tf2xla.python.xla', 'tensorflow.python.ops.bitwise_ops', 'tensorflow.python.ops.parallel_for.gradients', 'tensorflow.python.compiler.tensorrt', 'tensorflow.python.compiler.tensorrt.trt_convert', 'tensorflow.compiler.tf2tensorrt', 'tensorflow.compiler.tf2tensorrt.wrap_py_utils', '_wrap_py_utils', 'tensorflow.python.framework.convert_to_constants', 'tensorflow.python.grappler', 'tensorflow.python.grappler.tf_optimizer', 'tensorflow.python.grappler.cluster', 'tensorflow.core.grappler', 'tensorflow.core.grappler.costs', 'tensorflow.core.grappler.costs.op_performance_data_pb2', 'tensorflow.core.protobuf.device_properties_pb2', 'tensorflow.python.saved_model.builder', 'tensorflow.python.saved_model.builder_impl', 'tensorflow.core.protobuf.saved_model_pb2', 'tensorflow.python.saved_model.constants', 'tensorflow.python.saved_model.signature_def_utils', 'tensorflow.python.saved_model.signature_def_utils_impl', 'tensorflow.python.saved_model.signature_constants', 'tensorflow.python.saved_model.utils_impl', 'tensorflow.python.saved_model.load', 'tensorflow.python.saved_model.function_deserialization', 'tensorflow.python.framework.function_def_to_graph', 'tensorflow.python.saved_model.load_v1_in_v2', 'tensorflow.python.saved_model.loader_impl', 'tensorflow.python.saved_model.signature_serialization', 'tensorflow.python.training.monitored_session', 'tensorflow.python.ops.resources', 'tensorflow.python.summary.summary', 'google.protobuf.json_format', 'tensorflow.python.training.queue_runner', 'tensorflow.python.training.queue_runner_impl', 'tensorflow.core.protobuf.queue_runner_pb2', 'tensorflow.python.training.session_manager', 'tensorflow.python.saved_model.loader', 'tensorflow.python.saved_model.save', 'tensorflow.python.saved_model.function_serialization', 'tensorflow.python.saved_model.save_options', 'tensorflow.python.saved_model.tag_constants', 'tensorflow.python.ops.initializers_ns', 'tensorflow_core.python.keras', 'tensorflow.python.keras', 'tensorflow.python.keras.models', 'tensorflow.python.keras.backend', 'tensorflow.python.distribute.distribute_coordinator', 'tensorflow.python.keras.backend_config', 'tensorflow.python.ops.image_ops', 'tensorflow.python.ops.image_ops_impl', 'tensorflow.python.training.moving_averages', 'tensorflow.python.keras.metrics', 'tensorflow.python.keras.engine', 'tensorflow.python.keras.engine.base_layer', 'tensorflow.python.keras.constraints', 'tensorflow.python.keras.utils', 'tensorflow.python.keras.utils.generic_utils', 'tensorflow.python.keras.initializers', 'tensorflow.python.ops.init_ops_v2', 'tensorflow.python.keras.regularizers', 'tensorflow.python.keras.engine.base_layer_utils', 'tensorflow.python.ops.control_flow_v2_func_graphs', 'tensorflow.python.keras.engine.input_spec', 'tensorflow.python.keras.engine.node', 'tensorflow.python.keras.mixed_precision', 'tensorflow.python.keras.mixed_precision.experimental', 'tensorflow.python.keras.mixed_precision.experimental.autocast_variable', 'tensorflow.python.keras.mixed_precision.experimental.policy', 'tensorflow.python.keras.mixed_precision.experimental.loss_scale', 'tensorflow.python.keras.saving', 'tensorflow.python.keras.saving.saved_model', 'tensorflow.python.keras.saving.saved_model.layer_serialization', 'tensorflow.python.keras.saving.saved_model.base_serialization', 'tensorflow.python.util.serialization', 'tensorflow.python.keras.saving.saved_model.constants', 'tensorflow.python.keras.saving.saved_model.save_impl', 'tensorflow.python.keras.saving.saving_utils', 'tensorflow.python.keras.losses', 'tensorflow.python.keras.utils.losses_utils', 'tensorflow.python.keras.utils.tf_utils', 'tensorflow.python.keras.optimizers', 'tensorflow.python.keras.optimizer_v2', 'tensorflow.python.keras.optimizer_v2.adadelta', 'tensorflow.python.keras.optimizer_v2.optimizer_v2', 'tensorflow.python.keras.optimizer_v2.learning_rate_schedule', 'tensorflow.python.training.training_ops', 'tensorflow.python.training.gen_training_ops', 'tensorflow.python.keras.optimizer_v2.adagrad', 'tensorflow.python.keras.optimizer_v2.adam', 'tensorflow.python.keras.optimizer_v2.adamax', 'tensorflow.python.keras.optimizer_v2.ftrl', 'tensorflow.python.keras.optimizer_v2.gradient_descent', 'tensorflow.python.keras.optimizer_v2.nadam', 'tensorflow.python.keras.optimizer_v2.rmsprop', 'tensorflow.python.keras.utils.io_utils', 'h5py', 'h5py._errors', 'h5py._hl', 'h5py._hl.compat', 'h5py.version', 'h5py.h5', 'h5py.defs', 'h5py._objects', 'h5py._conv', 'h5py.h5r', 'h5py.h5t', 'h5py.utils', 'h5py.h5py_warnings', 'h5py.h5z', 'h5py.h5a', 'h5py.h5s', 'h5py.h5p', 'h5py.h5ac', 'h5py._proxy', 'h5py.h5d', 'h5py.h5ds', 'h5py.h5f', 'h5py.h5g', 'h5py.h5i', 'h5py.h5fd', 'h5py.h5pl', 'h5py._hl.filters', 'h5py._hl.base', 'h5py._hl.files', 'h5py._hl.group', 'h5py.h5o', 'h5py.h5l', 'h5py._hl.dataset', 'h5py._hl.selections', 'h5py._hl.selections2', 'h5py._hl.datatype', 'h5py._hl.vds', 'h5py._hl.attrs', 'tensorflow.python.keras.saving.saved_model.load', 'tensorflow.python.keras.saving.saved_model.utils', 'tensorflow.python.keras.saving.saved_model.serialized_attributes', 'tensorflow.python.keras.utils.metrics_utils', 'tensorflow.python.keras.engine.network', 'tensorflow.python.keras.engine.input_layer', 'tensorflow.python.keras.distribute', 'tensorflow.python.keras.distribute.distributed_training_utils', 'tensorflow.python.keras.callbacks', 'tensorflow.python.distribute.distributed_file_utils', 'tensorflow.python.keras.distribute.multi_worker_training_state', 'tensorflow.python.keras.utils.mode_keys', 'tensorflow.python.saved_model.model_utils', 'tensorflow.python.saved_model.model_utils.export_output', 'tensorflow.python.saved_model.model_utils.export_utils', 'tensorflow.python.saved_model.model_utils.mode_keys', 'tensorflow.python.keras.utils.data_utils', 'multiprocessing.dummy', 'multiprocessing.dummy.connection', 'tensorflow.python.keras.engine.training_utils', 'tensorflow.python.framework.composite_tensor_utils', 'tensorflow.python.keras.saving.hdf5_format', 'tensorflow.python.keras.saving.model_config', 'yaml', 'yaml.error', 'yaml.tokens', 'yaml.events', 'yaml.nodes', 'yaml.loader', 'yaml.reader', 'yaml.scanner', 'yaml.parser', 'yaml.composer', 'yaml.constructor', 'yaml.resolver', 'yaml.dumper', 'yaml.emitter', 'yaml.serializer', 'yaml.representer', 'yaml.cyaml', 'yaml._yaml', 'tensorflow.python.keras.utils.conv_utils', 'tensorflow.python.keras.saving.save', 'tensorflow.python.keras.saving.saved_model.save', 'tensorflow.python.keras.saving.saved_model.network_serialization', 'tensorflow.python.keras.utils.layer_utils', 'tensorflow.python.keras.engine.sequential', 'tensorflow.python.keras.layers', 'tensorflow.python.keras.engine.base_preprocessing_layer', 'tensorflow.python.keras.engine.training_generator', 'tensorflow.python.keras.layers.preprocessing', 'tensorflow.python.keras.layers.preprocessing.normalization_v1', 'tensorflow.python.keras.engine.base_preprocessing_layer_v1', 'tensorflow.python.keras.layers.preprocessing.normalization', 'tensorflow.python.keras.layers.preprocessing.text_vectorization_v1', 'tensorflow.python.keras.layers.preprocessing.text_vectorization', 'tensorflow.python.keras.layers.advanced_activations', 'tensorflow.python.keras.layers.convolutional', 'tensorflow.python.keras.activations', 'tensorflow.python.keras.layers.pooling', 'tensorflow.python.keras.layers.core', 'tensorflow.python.keras.layers.dense_attention', 'tensorflow.python.keras.layers.embeddings', 'tensorflow.python.keras.layers.local', 'tensorflow.python.keras.layers.merge', 'tensorflow.python.keras.layers.noise', 'tensorflow.python.keras.layers.normalization', 'tensorflow.python.keras.layers.normalization_v2', 'tensorflow.python.keras.layers.kernelized', 'tensorflow.python.keras.layers.recurrent', 'tensorflow.python.keras.layers.recurrent_v2', 'tensorflow.python.keras.layers.convolutional_recurrent', 'tensorflow.python.keras.layers.cudnn_recurrent', 'tensorflow.python.keras.layers.wrappers', 'tensorflow.python.keras.layers.rnn_cell_wrapper_v2', 'tensorflow.python.ops.rnn_cell_wrapper_impl', 'tensorflow.python.keras.layers.serialization', 'tensorflow.python.keras.engine.training', 'tensorflow.python.keras.engine.training_arrays', 'tensorflow.python.keras.engine.training_distributed', 'tensorflow.python.keras.engine.partial_batch_padding_handler', 'tensorflow.python.keras.engine.training_eager', 'tensorflow.python.keras.mixed_precision.experimental.loss_scale_optimizer', 'tensorflow.python.keras.engine.training_v2', 'tensorflow.python.keras.engine.data_adapter', 'pandas', 'pytz', 'pytz.exceptions', 'pytz.lazy', 'pytz.tzinfo', 'pytz.tzfile', 'dateutil', 'dateutil._version', 'pandas.compat', 'pandas.compat.chainmap', 'dateutil.parser', 'dateutil.parser._parser', 'dateutil.relativedelta', 'dateutil._common', 'dateutil.tz', 'dateutil.tz.tz', 'dateutil.tz._common', 'dateutil.tz._factories', 'dateutil.parser.isoparser', 'pandas.compat.numpy', 'pandas._libs', 'pandas._libs.tslib', 'pandas._libs.tslibs', 'pandas._libs.tslibs.conversion', 'pandas._libs.tslibs.np_datetime', '_cython_0_28_2', 'pandas._libs.tslibs.nattype', 'pandas._libs.tslibs.timedeltas', 'pandas._libs.tslibs.timezones', 'pandas._libs.tslibs.parsing', 'pandas._libs.tslibs.ccalendar', 'pandas._libs.tslibs.strptime', 'pandas._libs.tslibs.timestamps', 'pandas._libs.tslibs.fields', 'pandas._libs.hashtable', 'pandas._libs.missing', 'pandas._libs.lib', 'pandas.core', 'pandas.core.config_init', 'pandas.core.config', 'pandas.io', 'pandas.io.formats', 'pandas.io.formats.printing', 'pandas.core.dtypes', 'pandas.core.dtypes.inference', 'pandas.io.formats.console', 'pandas.io.formats.terminal', 'pandas.core.api', 'pandas.core.algorithms', 'pandas.core.dtypes.cast', 'pandas.core.dtypes.common', 'pandas._libs.algos', 'pandas.core.dtypes.dtypes', 'pandas.core.dtypes.generic', 'pandas.core.dtypes.base', 'pandas.errors', 'pandas.core.dtypes.missing', 'pandas.core.common', 'pandas.util', 'pandas.util._decorators', 'pandas._libs.properties', 'pandas.core.util', 'pandas.core.util.hashing', 'pandas._libs.hashing', 'pandas.core.arrays', 'pandas.core.arrays.base', 'pandas.compat.numpy.function', 'pandas.util._validators', 'pandas.core.arrays.categorical', 'pandas.core.accessor', 'pandas.core.base', 'pandas.core.nanops', 'pandas.core.missing', 'pandas.core.groupby', 'pandas.core.groupby.groupby', 'pandas.core.index', 'pandas.core.indexes', 'pandas.core.indexes.api', 'pandas.core.indexes.base', 'pandas._libs.index', 'pandas._libs.tslibs.period', 'pandas._libs.tslibs.frequencies', 'pandas._libs.tslibs.resolution', 'pandas.tseries', 'pandas.tseries.offsets', 'pandas.core.tools', 'pandas.core.tools.datetimes', 'dateutil.easter', 'pandas._libs.tslibs.offsets', 'pandas.tseries.frequencies', 'pandas._libs.join', 'pandas.core.ops', 'pandas._libs.ops', 'pandas.core.indexes.frozen', 'pandas.core.dtypes.concat', 'pandas.core.sorting', 'pandas.core.strings', 'pandas.core.indexes.category', 'pandas.core.indexes.multi', 'pandas.core.indexes.interval', 'pandas._libs.interval', 'pandas.core.indexes.datetimes', 'pandas.core.indexes.numeric', 'pandas.core.indexes.datetimelike', 'pandas.core.tools.timedeltas', 'pandas.core.indexes.timedeltas', 'pandas.core.indexes.range', 'pandas.core.indexes.period', 'pandas.core.frame', 'pandas.core.generic', 'pandas.core.indexing', 'pandas._libs.indexing', 'pandas.core.internals', 'pandas._libs.internals', 'pandas.core.sparse', 'pandas.core.sparse.array', 'pandas._libs.sparse', 'pandas.io.formats.format', 'pandas.io.common', 'pandas.core.series', 'pandas.core.indexes.accessors', 'pandas.plotting', 'pandas.plotting._misc', 'pandas.plotting._style', 'pandas.plotting._compat', 'pandas.plotting._tools', 'pandas.plotting._core', 'pandas.plotting._converter', 'matplotlib', 'matplotlib.cbook', 'matplotlib.cbook.deprecation', 'matplotlib.cbook._backports', 'matplotlib.compat', 'matplotlib.compat.subprocess', 'matplotlib.rcsetup', 'matplotlib.testing', 'matplotlib.fontconfig_pattern', 'pyparsing', 'matplotlib.colors', 'matplotlib._color_data', 'cycler', 'matplotlib._version'] INFO:root:正在从数据库读取原始数据 INFO:root:正在对原始数据进行数据扩增 INFO:root:正在统计原始数据的标签类型 INFO:root:正在制作词表 INFO:root:正在获取词向量 INFO:root:开始训练基础分类器 INFO:root:初始分类器准确率为0.4748322147651007 INFO:root:开始第1次重训练 INFO:root:开始第2次重训练 INFO:root:开始第3次重训练 INFO:root:开始第4次重训练 INFO:root:开始第5次重训练 INFO:root:开始第6次重训练 INFO:root:开始第7次重训练 INFO:root:开始第8次重训练 INFO:root:开始第9次重训练 INFO:root:开始第10次重训练 INFO:root:开始第11次重训练 INFO:root:开始第12次重训练 INFO:root:开始第13次重训练 INFO:root:开始第14次重训练 INFO:root:开始第15次重训练 INFO:root:训练完成,测试集准确率为0.27348993288590606 DEBUG:tensorflow:Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. DEBUG:h5py._conv:Creating converter from 7 to 5 DEBUG:h5py._conv:Creating converter from 5 to 7 DEBUG:h5py._conv:Creating converter from 7 to 5 DEBUG:h5py._conv:Creating converter from 5 to 7 DEBUG:tensorflow:Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. DEBUG:h5py._conv:Creating converter from 7 to 5 DEBUG:h5py._conv:Creating converter from 5 to 7 DEBUG:h5py._conv:Creating converter from 7 to 5 DEBUG:h5py._conv:Creating converter from 5 to 7 DEBUG:tensorflow:Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. DEBUG:h5py._conv:Creating converter from 7 to 5 DEBUG:h5py._conv:Creating converter from 5 to 7 DEBUG:h5py._conv:Creating converter from 7 to 5 DEBUG:h5py._conv:Creating converter from 5 to 7 DEBUG:tensorflow:Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. DEBUG:tensorflow:Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. DEBUG:tensorflow:Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. INFO:root:正在从数据库读取原始数据 DEBUG:tensorflow:Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. INFO:root:正在从数据库读取原始数据 DEBUG:tensorflow:Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. INFO:root:正在从数据库读取原始数据 DEBUG:tensorflow:Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. INFO:root:正在统计原始数据的标签类型 DEBUG:tensorflow:Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. INFO:root:正在统计原始数据的标签类型 DEBUG:tensorflow:Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. INFO:root:正在统计原始数据的标签类型 DEBUG:tensorflow:Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. INFO:root:正在从数据库读取原始数据 DEBUG:tensorflow:Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. INFO:root:正在统计原始数据的标签类型 INFO:root:正在制作词表 INFO:root:正在获取词向量 INFO:root:开始训练基础分类器 INFO:root:初始分类器准确率为0.6 INFO:root:开始第1次重训练 INFO:root:开始第2次重训练 INFO:root:开始第3次重训练 INFO:root:训练完成,测试集准确率为0.7 DEBUG:tensorflow:Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. INFO:root:正在从数据库读取原始数据 INFO:root:正在统计原始数据的标签类型 INFO:root:正在制作词表 INFO:root:正在获取词向量 INFO:root:开始训练基础分类器 INFO:root:初始分类器准确率为0.41346153846153844 INFO:root:开始第1次重训练 INFO:root:开始第2次重训练 INFO:root:训练完成,测试集准确率为0.34615384615384615 DEBUG:tensorflow:Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. INFO:root:正在从数据库读取原始数据 INFO:root:正在统计原始数据的标签类型 INFO:root:正在制作词表 INFO:root:正在获取词向量 INFO:root:开始训练基础分类器 INFO:root:初始分类器准确率为0.41346153846153844 INFO:root:开始第1次重训练 INFO:root:开始第2次重训练 INFO:root:训练完成,测试集准确率为0.34615384615384615 DEBUG:tensorflow:Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. INFO:root:正在从数据库读取原始数据 INFO:root:正在统计原始数据的标签类型 INFO:root:正在制作词表 INFO:root:正在获取词向量 INFO:root:开始训练基础分类器 INFO:root:初始分类器准确率为0.41346153846153844 INFO:root:开始第1次重训练 INFO:root:开始第2次重训练 INFO:root:训练完成,测试集准确率为0.34615384615384615 DEBUG:tensorflow:Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. INFO:root:正在从数据库读取原始数据 INFO:root:正在统计原始数据的标签类型 INFO:root:正在制作词表 INFO:root:正在获取词向量 INFO:root:开始训练基础分类器 INFO:root:初始分类器准确率为0.46464646464646464 INFO:root:开始第1次重训练 INFO:root:开始第2次重训练 INFO:root:开始第3次重训练 INFO:root:开始第4次重训练 INFO:root:开始第5次重训练 INFO:root:开始第6次重训练 INFO:root:开始第7次重训练 INFO:root:开始第8次重训练 INFO:root:开始第9次重训练 INFO:root:训练完成,测试集准确率为0.29292929292929293 DEBUG:tensorflow:Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. INFO:root:正在统计原始数据的标签类型 INFO:root:正在制作词表 INFO:root:正在获取词向量 INFO:root:开始训练基础分类器 INFO:root:初始分类器准确率为0.46464646464646464 INFO:root:开始第1次重训练 INFO:root:开始第2次重训练 INFO:root:开始第3次重训练 INFO:root:开始第4次重训练 INFO:root:开始第5次重训练 INFO:root:开始第6次重训练 INFO:root:开始第7次重训练 INFO:root:开始第8次重训练 INFO:root:开始第9次重训练 INFO:root:训练完成,测试集准确率为0.29292929292929293 DEBUG:tensorflow:Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. INFO:root:正在统计原始数据的标签类型 INFO:root:正在制作词表 INFO:root:正在获取词向量 INFO:root:开始训练基础分类器 INFO:root:初始分类器准确率为0.4748322147651007 INFO:root:开始第1次重训练 INFO:root:开始第2次重训练 INFO:root:开始第3次重训练 INFO:root:开始第4次重训练 INFO:root:开始第5次重训练 INFO:root:开始第6次重训练 INFO:root:开始第7次重训练 INFO:root:开始第8次重训练 INFO:root:开始第9次重训练 INFO:root:开始第10次重训练 INFO:root:开始第11次重训练 INFO:root:开始第12次重训练 INFO:root:开始第13次重训练 INFO:root:开始第14次重训练 INFO:root:开始第15次重训练 INFO:root:开始第16次重训练 INFO:root:开始第17次重训练 INFO:root:训练完成,测试集准确率为0.4429530201342282 DEBUG:tensorflow:Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. INFO:root:正在统计原始数据的标签类型 INFO:root:正在制作词表 INFO:root:正在获取词向量 INFO:root:开始训练基础分类器 INFO:root:初始分类器准确率为0.508833922261484 INFO:root:开始第1次重训练 INFO:root:开始第2次重训练 INFO:root:开始第3次重训练 INFO:root:开始第4次重训练 INFO:root:训练完成,测试集准确率为0.508833922261484 DEBUG:tensorflow:Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. INFO:root:正在从数据库读取原始数据 DEBUG:tensorflow:Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. INFO:root:正在从数据库读取原始数据 09/06/2022 01:21:20 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/06/2022 01:21:22 [INFO] data_processor: 正在从数据库读取原始数据 09/06/2022 01:29:13 [INFO] data_processor: 正在对原始数据进行数据扩增 09/06/2022 05:32:20 [INFO] data_processor: 正在统计原始数据的标签类型 09/06/2022 05:32:20 [INFO] data_processor: 正在制作词表 09/06/2022 05:32:20 [INFO] data_processor: 正在获取词向量 09/06/2022 05:32:20 [INFO] bilstm_attention: 开始训练模型:决赛自主可控众测web自主可控运维管理系统 09/06/2022 05:32:20 [INFO] bilstm_attention: pytorch 初始化 09/06/2022 05:32:20 [INFO] bilstm_attention: 模型初始化 09/06/2022 05:32:20 [INFO] bilstm_attention: 开始训练基础分类器 09/06/2022 05:32:41 [INFO] bilstm_attention: 初始分类器accuracy为0.5275 09/06/2022 05:32:41 [INFO] bilstm_attention: 初始分类器召回率为0.2619166666666666 09/06/2022 05:32:41 [INFO] bilstm_attention: 初始分类器precision为0.14285416666666667 09/06/2022 05:32:41 [INFO] bilstm_attention: 初始分类器f1_score为0.1802682066489447 09/06/2022 05:32:44 [INFO] bilstm_attention: 开始第1次重训练 09/06/2022 05:33:08 [INFO] bilstm_attention: 开始第2次重训练 09/06/2022 05:33:45 [INFO] bilstm_attention: 开始第3次重训练 09/06/2022 05:34:41 [INFO] bilstm_attention: 开始第4次重训练 09/06/2022 05:35:35 [INFO] bilstm_attention: 开始第5次重训练 09/06/2022 05:37:21 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.52625 09/06/2022 05:37:21 [INFO] bilstm_attention: 训练完成,测试集召回率为0.2606666666666666 09/06/2022 05:37:21 [INFO] bilstm_attention: 训练完成,测试集Precision为0.13772916666666668 09/06/2022 05:37:21 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.17813833651907454 09/06/2022 05:37:21 [INFO] data_processor: 正在从数据库读取原始数据 09/06/2022 05:42:46 [INFO] data_processor: 正在对原始数据进行数据扩增 09/06/2022 08:59:18 [INFO] data_processor: 正在统计原始数据的标签类型 09/06/2022 08:59:18 [INFO] data_processor: 正在制作词表 09/06/2022 08:59:18 [INFO] data_processor: 正在获取词向量 09/06/2022 08:59:18 [INFO] bilstm_attention: 开始训练模型:航天中认自主可控众包测试练习赛 09/06/2022 08:59:18 [INFO] bilstm_attention: pytorch 初始化 09/06/2022 08:59:18 [INFO] bilstm_attention: 模型初始化 09/06/2022 08:59:18 [INFO] bilstm_attention: 开始训练基础分类器 09/06/2022 08:59:33 [INFO] bilstm_attention: 初始分类器accuracy为0.508833922261484 09/06/2022 08:59:33 [INFO] bilstm_attention: 初始分类器召回率为0.2719521604938271 09/06/2022 08:59:33 [INFO] bilstm_attention: 初始分类器precision为0.1481770833333333 09/06/2022 08:59:33 [INFO] bilstm_attention: 初始分类器f1_score为0.18484307301677788 09/06/2022 08:59:36 [INFO] bilstm_attention: 开始第1次重训练 09/06/2022 09:00:06 [INFO] bilstm_attention: 开始第2次重训练 09/06/2022 09:00:37 [INFO] bilstm_attention: 开始第3次重训练 09/06/2022 09:01:08 [INFO] bilstm_attention: 开始第4次重训练 09/06/2022 09:01:44 [INFO] bilstm_attention: 开始第5次重训练 09/06/2022 09:02:24 [INFO] bilstm_attention: 开始第6次重训练 09/06/2022 09:03:08 [INFO] bilstm_attention: 开始第7次重训练 09/06/2022 09:04:33 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.508833922261484 09/06/2022 09:04:33 [INFO] bilstm_attention: 训练完成,测试集召回率为0.2717592592592592 09/06/2022 09:04:33 [INFO] bilstm_attention: 训练完成,测试集Precision为0.14042245370370368 09/06/2022 09:04:33 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.18221373733188662 09/06/2022 09:04:33 [INFO] data_processor: 正在从数据库读取原始数据 09/06/2022 09:10:11 [INFO] data_processor: 正在对原始数据进行数据扩增 09/06/2022 13:00:44 [INFO] data_processor: 正在统计原始数据的标签类型 09/06/2022 13:00:44 [INFO] data_processor: 正在制作词表 09/06/2022 13:00:44 [INFO] data_processor: 正在获取词向量 09/06/2022 13:00:44 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/06/2022 13:00:44 [INFO] bilstm_attention: pytorch 初始化 09/06/2022 13:00:44 [INFO] bilstm_attention: 模型初始化 09/06/2022 13:00:44 [INFO] bilstm_attention: 开始训练基础分类器 09/06/2022 13:01:00 [INFO] bilstm_attention: 初始分类器accuracy为0.4664429530201342 09/06/2022 13:01:00 [INFO] bilstm_attention: 初始分类器召回率为0.24035087719298245 09/06/2022 13:01:00 [INFO] bilstm_attention: 初始分类器precision为0.1123355263157895 09/06/2022 13:01:00 [INFO] bilstm_attention: 初始分类器f1_score为0.15088844742849322 09/06/2022 13:01:02 [INFO] bilstm_attention: 开始第1次重训练 09/06/2022 13:01:33 [INFO] bilstm_attention: 开始第2次重训练 09/06/2022 13:02:07 [INFO] bilstm_attention: 开始第3次重训练 09/06/2022 13:02:49 [INFO] bilstm_attention: 开始第4次重训练 09/06/2022 13:03:32 [INFO] bilstm_attention: 开始第5次重训练 09/06/2022 13:04:16 [INFO] bilstm_attention: 开始第6次重训练 09/06/2022 13:05:00 [INFO] bilstm_attention: 开始第7次重训练 09/06/2022 13:05:44 [INFO] bilstm_attention: 开始第8次重训练 09/06/2022 13:06:29 [INFO] bilstm_attention: 开始第9次重训练 09/06/2022 13:07:13 [INFO] bilstm_attention: 开始第10次重训练 09/06/2022 13:07:58 [INFO] bilstm_attention: 开始第11次重训练 09/06/2022 13:08:42 [INFO] bilstm_attention: 开始第12次重训练 09/06/2022 13:09:26 [INFO] bilstm_attention: 开始第13次重训练 09/06/2022 13:10:10 [INFO] bilstm_attention: 开始第14次重训练 09/06/2022 13:10:59 [INFO] bilstm_attention: 开始第15次重训练 09/06/2022 13:11:45 [INFO] bilstm_attention: 开始第16次重训练 09/06/2022 13:12:31 [INFO] bilstm_attention: 开始第17次重训练 09/06/2022 13:13:16 [INFO] bilstm_attention: 开始第18次重训练 09/06/2022 13:14:47 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.35906040268456374 09/06/2022 13:14:47 [INFO] bilstm_attention: 训练完成,测试集召回率为0.1565782511835144 09/06/2022 13:14:47 [INFO] bilstm_attention: 训练完成,测试集Precision为0.10065357644305015 09/06/2022 13:14:47 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.11665934562881802 以上是 sql3读出的结果↑ 09/06/2022 13:19:20 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/06/2022 13:19:22 [INFO] data_processor: 正在从数据库读取原始数据 09/06/2022 13:19:22 [INFO] data_processor: 正在对原始数据进行数据扩增 09/06/2022 13:19:22 [INFO] data_processor: 正在统计原始数据的标签类型 09/06/2022 13:19:39 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/06/2022 13:19:40 [INFO] data_processor: 正在从数据库读取原始数据 09/06/2022 13:19:40 [INFO] data_processor: 正在对原始数据进行数据扩增 09/06/2022 13:19:40 [INFO] data_processor: 正在统计原始数据的标签类型 09/06/2022 13:19:40 [INFO] data_processor: 正在制作词表 09/06/2022 13:19:40 [INFO] data_processor: 正在获取词向量 09/06/2022 13:19:40 [INFO] bilstm_attention: 开始训练模型:决赛自主可控众测web自主可控运维管理系统 09/06/2022 13:19:40 [INFO] bilstm_attention: pytorch 初始化 09/06/2022 13:19:40 [INFO] bilstm_attention: 模型初始化 09/06/2022 13:19:40 [INFO] bilstm_attention: 开始训练基础分类器 09/06/2022 13:19:59 [INFO] bilstm_attention: 初始分类器accuracy为0.5275 09/06/2022 13:19:59 [INFO] bilstm_attention: 初始分类器召回率为0.2619166666666666 09/06/2022 13:19:59 [INFO] bilstm_attention: 初始分类器precision为0.14285416666666667 09/06/2022 13:19:59 [INFO] bilstm_attention: 初始分类器f1_score为0.1802682066489447 09/06/2022 13:20:03 [INFO] bilstm_attention: 开始第1次重训练 09/06/2022 13:20:27 [INFO] bilstm_attention: 开始第2次重训练 09/06/2022 13:21:04 [INFO] bilstm_attention: 开始第3次重训练 09/06/2022 13:21:48 [INFO] bilstm_attention: 开始第4次重训练 09/06/2022 13:22:40 [INFO] bilstm_attention: 开始第5次重训练 09/06/2022 13:23:33 [INFO] bilstm_attention: 开始第6次重训练 09/06/2022 13:24:28 [INFO] bilstm_attention: 开始第7次重训练 09/06/2022 13:25:23 [INFO] bilstm_attention: 开始第8次重训练 09/06/2022 13:26:19 [INFO] bilstm_attention: 开始第9次重训练 09/06/2022 13:27:16 [INFO] bilstm_attention: 开始第10次重训练 09/06/2022 13:28:16 [INFO] bilstm_attention: 开始第11次重训练 09/06/2022 13:29:14 [INFO] bilstm_attention: 开始第12次重训练 09/06/2022 13:30:12 [INFO] bilstm_attention: 开始第13次重训练 09/06/2022 13:31:10 [INFO] bilstm_attention: 开始第14次重训练 09/06/2022 13:32:09 [INFO] bilstm_attention: 开始第15次重训练 09/06/2022 13:33:08 [INFO] bilstm_attention: 开始第16次重训练 09/06/2022 13:34:08 [INFO] bilstm_attention: 开始第17次重训练 09/06/2022 13:35:10 [INFO] bilstm_attention: 开始第18次重训练 09/06/2022 13:36:13 [INFO] bilstm_attention: 开始第19次重训练 09/06/2022 13:37:16 [INFO] bilstm_attention: 开始第20次重训练 09/06/2022 13:38:19 [INFO] bilstm_attention: 开始第21次重训练 09/06/2022 13:39:22 [INFO] bilstm_attention: 开始第22次重训练 09/06/2022 13:40:23 [INFO] bilstm_attention: 开始第23次重训练 09/06/2022 13:41:24 [INFO] bilstm_attention: 开始第24次重训练 09/06/2022 13:43:27 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.33875 09/06/2022 13:43:27 [INFO] bilstm_attention: 训练完成,测试集召回率为0.26684637769637765 09/06/2022 13:43:27 [INFO] bilstm_attention: 训练完成,测试集Precision为0.2025890183890184 09/06/2022 13:43:27 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.19970878392333496 09/06/2022 13:43:27 [INFO] data_processor: 正在从数据库读取原始数据 09/06/2022 13:43:27 [INFO] data_processor: 正在对原始数据进行数据扩增 09/06/2022 13:43:28 [INFO] data_processor: 正在统计原始数据的标签类型 09/06/2022 13:43:28 [INFO] data_processor: 正在制作词表 09/06/2022 13:43:28 [INFO] data_processor: 正在获取词向量 09/06/2022 13:43:28 [INFO] bilstm_attention: 开始训练模型:航天中认自主可控众包测试练习赛 09/06/2022 13:43:28 [INFO] bilstm_attention: pytorch 初始化 09/06/2022 13:43:28 [INFO] bilstm_attention: 模型初始化 09/06/2022 13:43:28 [INFO] bilstm_attention: 开始训练基础分类器 09/06/2022 13:43:42 [INFO] bilstm_attention: 初始分类器accuracy为0.508833922261484 09/06/2022 13:43:42 [INFO] bilstm_attention: 初始分类器召回率为0.2717592592592592 09/06/2022 13:43:42 [INFO] bilstm_attention: 初始分类器precision为0.14042245370370368 09/06/2022 13:43:42 [INFO] bilstm_attention: 初始分类器f1_score为0.18221373733188662 09/06/2022 13:43:44 [INFO] bilstm_attention: 开始第1次重训练 09/06/2022 13:44:16 [INFO] bilstm_attention: 开始第2次重训练 09/06/2022 13:45:17 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.508833922261484 09/06/2022 13:45:17 [INFO] bilstm_attention: 训练完成,测试集召回率为0.2717592592592592 09/06/2022 13:45:17 [INFO] bilstm_attention: 训练完成,测试集Precision为0.14042245370370368 09/06/2022 13:45:17 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.18221373733188662 09/06/2022 13:45:17 [INFO] data_processor: 正在从数据库读取原始数据 09/06/2022 13:45:17 [INFO] data_processor: 正在对原始数据进行数据扩增 09/06/2022 13:45:17 [INFO] data_processor: 正在统计原始数据的标签类型 09/06/2022 13:45:17 [INFO] data_processor: 正在制作词表 09/06/2022 13:45:17 [INFO] data_processor: 正在获取词向量 09/06/2022 13:45:17 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/06/2022 13:45:17 [INFO] bilstm_attention: pytorch 初始化 09/06/2022 13:45:17 [INFO] bilstm_attention: 模型初始化 09/06/2022 13:45:17 [INFO] bilstm_attention: 开始训练基础分类器 09/06/2022 13:45:32 [INFO] bilstm_attention: 初始分类器accuracy为0.46476510067114096 09/06/2022 13:45:32 [INFO] bilstm_attention: 初始分类器召回率为0.2387426900584795 09/06/2022 13:45:32 [INFO] bilstm_attention: 初始分类器precision为0.11182383040935673 09/06/2022 13:45:32 [INFO] bilstm_attention: 初始分类器f1_score为0.1501061887514977 09/06/2022 13:45:35 [INFO] bilstm_attention: 开始第1次重训练 09/06/2022 13:46:05 [INFO] bilstm_attention: 开始第2次重训练 09/06/2022 13:46:37 [INFO] bilstm_attention: 开始第3次重训练 09/06/2022 13:47:09 [INFO] bilstm_attention: 开始第4次重训练 09/06/2022 13:47:42 [INFO] bilstm_attention: 开始第5次重训练 09/06/2022 13:48:15 [INFO] bilstm_attention: 开始第6次重训练 09/06/2022 13:48:48 [INFO] bilstm_attention: 开始第7次重训练 09/06/2022 13:49:22 [INFO] bilstm_attention: 开始第8次重训练 09/06/2022 13:49:56 [INFO] bilstm_attention: 开始第9次重训练 09/06/2022 13:50:30 [INFO] bilstm_attention: 开始第10次重训练 09/06/2022 13:51:05 [INFO] bilstm_attention: 开始第11次重训练 09/06/2022 13:51:41 [INFO] bilstm_attention: 开始第12次重训练 09/06/2022 13:52:15 [INFO] bilstm_attention: 开始第13次重训练 09/06/2022 13:52:50 [INFO] bilstm_attention: 开始第14次重训练 09/06/2022 13:53:25 [INFO] bilstm_attention: 开始第15次重训练 09/06/2022 13:54:00 [INFO] bilstm_attention: 开始第16次重训练 09/06/2022 13:54:35 [INFO] bilstm_attention: 开始第17次重训练 09/06/2022 13:55:10 [INFO] bilstm_attention: 开始第18次重训练 09/06/2022 13:55:46 [INFO] bilstm_attention: 开始第19次重训练 09/06/2022 13:56:21 [INFO] bilstm_attention: 开始第20次重训练 09/06/2022 13:56:58 [INFO] bilstm_attention: 开始第21次重训练 09/06/2022 13:58:11 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.2348993288590604 09/06/2022 13:58:11 [INFO] bilstm_attention: 训练完成,测试集召回率为0.19923402255639094 09/06/2022 13:58:11 [INFO] bilstm_attention: 训练完成,测试集Precision为0.1218473522091943 09/06/2022 13:58:11 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.12357362645094842 以上为 学长increase.npy跑的内容↑ 09/06/2022 14:36:53 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/06/2022 14:36:54 [INFO] data_processor: 正在从数据库读取原始数据 09/06/2022 14:36:54 [INFO] data_processor: 正在对原始数据进行数据扩增 09/06/2022 14:36:54 [INFO] data_processor: 正在统计原始数据的标签类型 09/06/2022 15:03:59 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/06/2022 15:04:00 [INFO] data_processor: 正在从数据库读取原始数据 09/06/2022 15:11:55 [INFO] data_processor: 正在对原始数据进行数据扩增 09/06/2022 15:11:55 [INFO] data_processor: 正在统计原始数据的标签类型 09/06/2022 15:11:55 [INFO] data_processor: 正在制作词表 09/06/2022 15:11:55 [INFO] data_processor: 正在获取词向量 09/06/2022 15:11:55 [INFO] bilstm_attention: 开始训练模型:决赛自主可控众测web自主可控运维管理系统 09/06/2022 15:11:55 [INFO] bilstm_attention: pytorch 初始化 09/06/2022 15:11:55 [INFO] bilstm_attention: 模型初始化 09/06/2022 15:11:55 [INFO] bilstm_attention: 开始训练基础分类器 09/06/2022 15:11:58 [INFO] bilstm_attention: 初始分类器accuracy为0.5112781954887218 09/06/2022 15:11:58 [INFO] bilstm_attention: 初始分类器召回率为0.26296296296296295 09/06/2022 15:11:58 [INFO] bilstm_attention: 初始分类器precision为0.1265046296296296 09/06/2022 15:11:58 [INFO] bilstm_attention: 初始分类器f1_score为0.1678516866922664 09/06/2022 15:11:59 [INFO] bilstm_attention: 开始第1次重训练 09/06/2022 15:12:06 [INFO] bilstm_attention: 开始第2次重训练 09/06/2022 15:12:13 [INFO] bilstm_attention: 开始第3次重训练 09/06/2022 15:12:22 [INFO] bilstm_attention: 开始第4次重训练 09/06/2022 15:12:32 [INFO] bilstm_attention: 开始第5次重训练 09/06/2022 15:12:42 [INFO] bilstm_attention: 开始第6次重训练 09/06/2022 15:12:53 [INFO] bilstm_attention: 开始第7次重训练 09/06/2022 15:13:03 [INFO] bilstm_attention: 开始第8次重训练 09/06/2022 15:13:14 [INFO] bilstm_attention: 开始第9次重训练 09/06/2022 15:13:25 [INFO] bilstm_attention: 开始第10次重训练 09/06/2022 15:13:36 [INFO] bilstm_attention: 开始第11次重训练 09/06/2022 15:14:01 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.5112781954887218 09/06/2022 15:14:01 [INFO] bilstm_attention: 训练完成,测试集召回率为0.26296296296296295 09/06/2022 15:14:01 [INFO] bilstm_attention: 训练完成,测试集Precision为0.1265046296296296 09/06/2022 15:14:01 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.1678516866922664 09/06/2022 15:14:01 [INFO] data_processor: 正在从数据库读取原始数据 09/06/2022 15:19:29 [INFO] data_processor: 正在对原始数据进行数据扩增 09/06/2022 15:19:29 [INFO] data_processor: 正在统计原始数据的标签类型 09/06/2022 15:19:29 [INFO] data_processor: 正在制作词表 09/06/2022 15:19:29 [INFO] data_processor: 正在获取词向量 09/06/2022 15:19:29 [INFO] bilstm_attention: 开始训练模型:航天中认自主可控众包测试练习赛 09/06/2022 15:19:29 [INFO] bilstm_attention: pytorch 初始化 09/06/2022 15:19:29 [INFO] bilstm_attention: 模型初始化 09/06/2022 15:19:29 [INFO] bilstm_attention: 开始训练基础分类器 09/06/2022 15:19:31 [INFO] bilstm_attention: 初始分类器accuracy为0.43617021276595747 09/06/2022 15:19:31 [INFO] bilstm_attention: 初始分类器召回率为0.2833333333333333 09/06/2022 15:19:31 [INFO] bilstm_attention: 初始分类器precision为0.12135416666666667 09/06/2022 15:19:31 [INFO] bilstm_attention: 初始分类器f1_score为0.16691483503077706 09/06/2022 15:19:32 [INFO] bilstm_attention: 开始第1次重训练 09/06/2022 15:19:39 [INFO] bilstm_attention: 开始第2次重训练 09/06/2022 15:19:47 [INFO] bilstm_attention: 开始第3次重训练 09/06/2022 15:19:55 [INFO] bilstm_attention: 开始第4次重训练 09/06/2022 15:20:04 [INFO] bilstm_attention: 开始第5次重训练 09/06/2022 15:20:22 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.43617021276595747 09/06/2022 15:20:22 [INFO] bilstm_attention: 训练完成,测试集召回率为0.2833333333333333 09/06/2022 15:20:22 [INFO] bilstm_attention: 训练完成,测试集Precision为0.12135416666666667 09/06/2022 15:20:22 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.16691483503077706 09/06/2022 15:20:22 [INFO] data_processor: 正在从数据库读取原始数据 09/06/2022 15:26:13 [INFO] data_processor: 正在对原始数据进行数据扩增 09/06/2022 15:26:13 [INFO] data_processor: 正在统计原始数据的标签类型 09/06/2022 15:26:13 [INFO] data_processor: 正在制作词表 09/06/2022 15:26:13 [INFO] data_processor: 正在获取词向量 09/06/2022 15:26:13 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/06/2022 15:26:13 [INFO] bilstm_attention: pytorch 初始化 09/06/2022 15:26:13 [INFO] bilstm_attention: 模型初始化 09/06/2022 15:26:13 [INFO] bilstm_attention: 开始训练基础分类器 09/06/2022 15:26:16 [INFO] bilstm_attention: 初始分类器accuracy为0.46464646464646464 09/06/2022 15:26:16 [INFO] bilstm_attention: 初始分类器召回率为0.24863945578231292 09/06/2022 15:26:16 [INFO] bilstm_attention: 初始分类器precision为0.1888214959643531 09/06/2022 15:26:16 [INFO] bilstm_attention: 初始分类器f1_score为0.19446749268269178 09/06/2022 15:26:17 [INFO] bilstm_attention: 开始第1次重训练 09/06/2022 15:26:25 [INFO] bilstm_attention: 开始第2次重训练 09/06/2022 15:26:34 [INFO] bilstm_attention: 开始第3次重训练 09/06/2022 15:26:44 [INFO] bilstm_attention: 开始第4次重训练 09/06/2022 15:26:53 [INFO] bilstm_attention: 开始第5次重训练 09/06/2022 15:27:11 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.494949494949495 09/06/2022 15:27:11 [INFO] bilstm_attention: 训练完成,测试集召回率为0.22380952380952382 09/06/2022 15:27:11 [INFO] bilstm_attention: 训练完成,测试集Precision为0.11919642857142856 09/06/2022 15:27:11 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.15395511627395683 09/06/2022 16:35:59 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/06/2022 16:36:38 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/06/2022 16:36:39 [INFO] data_processor: 正在从数据库读取原始数据 09/06/2022 16:41:58 [INFO] data_processor: 正在对原始数据进行数据扩增 09/06/2022 17:12:11 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/06/2022 17:12:13 [INFO] data_processor: 正在从数据库读取原始数据 09/06/2022 17:17:59 [INFO] data_processor: 正在对原始数据进行数据扩增 09/06/2022 21:01:48 [INFO] data_processor: 正在统计原始数据的标签类型 09/06/2022 21:01:48 [INFO] data_processor: 正在制作词表 09/06/2022 21:01:48 [INFO] data_processor: 正在获取词向量 09/06/2022 21:01:48 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/06/2022 21:01:48 [INFO] bilstm_attention: pytorch 初始化 09/06/2022 21:01:48 [INFO] bilstm_attention: 模型初始化 09/06/2022 21:01:48 [INFO] bilstm_attention: 开始训练基础分类器 09/06/2022 21:02:04 [INFO] bilstm_attention: 初始分类器accuracy为0.4664429530201342 09/06/2022 21:02:04 [INFO] bilstm_attention: 初始分类器召回率为0.24035087719298245 09/06/2022 21:02:04 [INFO] bilstm_attention: 初始分类器precision为0.1123355263157895 09/06/2022 21:02:04 [INFO] bilstm_attention: 初始分类器f1_score为0.15088844742849322 09/06/2022 21:02:07 [INFO] bilstm_attention: 开始第1次重训练 09/06/2022 21:02:26 [INFO] bilstm_attention: 开始第2次重训练 09/06/2022 21:02:46 [INFO] bilstm_attention: 开始第3次重训练 09/06/2022 21:03:05 [INFO] bilstm_attention: 开始第4次重训练 09/06/2022 21:03:25 [INFO] bilstm_attention: 开始第5次重训练 09/06/2022 21:03:45 [INFO] bilstm_attention: 开始第6次重训练 09/06/2022 21:04:29 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.4664429530201342 09/06/2022 21:04:29 [INFO] bilstm_attention: 训练完成,测试集召回率为0.24035087719298245 09/06/2022 21:04:29 [INFO] bilstm_attention: 训练完成,测试集Precision为0.1123355263157895 09/06/2022 21:04:29 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.15088844742849322 09/06/2022 22:26:08 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/06/2022 22:26:09 [INFO] data_processor: 正在对原始数据进行数据扩增 09/06/2022 22:26:09 [INFO] data_processor: 正在统计原始数据的标签类型 09/06/2022 22:27:25 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/06/2022 22:27:27 [INFO] data_processor: 正在对原始数据进行数据扩增 09/06/2022 22:27:27 [INFO] data_processor: 正在统计原始数据的标签类型 09/06/2022 22:27:27 [INFO] data_processor: 正在制作词表 09/06/2022 22:27:27 [INFO] data_processor: 正在获取词向量 09/06/2022 22:27:27 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/06/2022 22:27:27 [INFO] bilstm_attention: pytorch 初始化 09/06/2022 22:27:27 [INFO] bilstm_attention: 模型初始化 09/06/2022 22:27:27 [INFO] bilstm_attention: 开始训练基础分类器 09/06/2022 22:29:56 [INFO] bilstm_attention: 初始分类器accuracy为0.46140939597315433 09/06/2022 22:29:56 [INFO] bilstm_attention: 初始分类器召回率为0.2612202380952381 09/06/2022 22:29:56 [INFO] bilstm_attention: 初始分类器precision为0.18331566094723992 09/06/2022 22:29:56 [INFO] bilstm_attention: 初始分类器f1_score为0.1919964770355044 09/06/2022 22:29:59 [INFO] bilstm_attention: 开始第1次重训练 09/06/2022 22:33:36 [INFO] bilstm_attention: 开始第2次重训练 09/06/2022 22:33:53 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/06/2022 22:33:54 [INFO] data_processor: 正在对原始数据进行数据扩增 09/06/2022 22:33:54 [INFO] data_processor: 正在统计原始数据的标签类型 09/06/2022 22:33:54 [INFO] data_processor: 正在制作词表 09/06/2022 22:33:54 [INFO] data_processor: 正在获取词向量 09/06/2022 22:33:54 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/06/2022 22:33:54 [INFO] bilstm_attention: pytorch 初始化 09/06/2022 22:33:54 [INFO] bilstm_attention: 模型初始化 09/06/2022 22:33:54 [INFO] bilstm_attention: 开始训练基础分类器 09/06/2022 22:34:23 [INFO] bilstm_attention: 初始分类器accuracy为0.46140939597315433 09/06/2022 22:34:23 [INFO] bilstm_attention: 初始分类器召回率为0.2622906223893066 09/06/2022 22:34:23 [INFO] bilstm_attention: 初始分类器precision为0.1856951674056937 09/06/2022 22:34:23 [INFO] bilstm_attention: 初始分类器f1_score为0.1917470831199303 09/06/2022 22:34:25 [INFO] bilstm_attention: 开始第1次重训练 09/06/2022 22:35:17 [INFO] bilstm_attention: 开始第2次重训练 09/06/2022 22:36:12 [INFO] bilstm_attention: 开始第3次重训练 09/06/2022 22:37:14 [INFO] bilstm_attention: 开始第4次重训练 09/06/2022 22:38:18 [INFO] bilstm_attention: 开始第5次重训练 09/06/2022 22:39:27 [INFO] bilstm_attention: 开始第6次重训练 09/06/2022 22:40:39 [INFO] bilstm_attention: 开始第7次重训练 09/06/2022 22:41:54 [INFO] bilstm_attention: 开始第8次重训练 09/06/2022 22:43:11 [INFO] bilstm_attention: 开始第9次重训练 09/06/2022 22:44:29 [INFO] bilstm_attention: 开始第10次重训练 09/06/2022 22:45:46 [INFO] bilstm_attention: 开始第11次重训练 09/06/2022 22:47:02 [INFO] bilstm_attention: 开始第12次重训练 09/06/2022 22:48:20 [INFO] bilstm_attention: 开始第13次重训练 09/06/2022 22:49:40 [INFO] bilstm_attention: 开始第14次重训练 09/06/2022 22:50:59 [INFO] bilstm_attention: 开始第15次重训练 09/06/2022 22:53:36 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.4077181208053691 09/06/2022 22:53:36 [INFO] bilstm_attention: 训练完成,测试集召回率为0.2516920774157616 09/06/2022 22:53:36 [INFO] bilstm_attention: 训练完成,测试集Precision为0.20253697326065748 09/06/2022 22:53:36 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.19972863037090352 09/06/2022 23:43:27 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/06/2022 23:43:29 [INFO] data_processor: 正在对原始数据进行数据扩增 09/06/2022 23:43:29 [INFO] data_processor: 正在统计原始数据的标签类型 09/06/2022 23:43:29 [INFO] data_processor: 正在制作词表 09/06/2022 23:43:29 [INFO] data_processor: 正在获取词向量 09/06/2022 23:43:29 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/06/2022 23:43:29 [INFO] bilstm_attention: pytorch 初始化 09/06/2022 23:43:29 [INFO] bilstm_attention: 模型初始化 09/06/2022 23:43:29 [INFO] bilstm_attention: 开始训练基础分类器 09/06/2022 23:43:44 [INFO] bilstm_attention: 初始分类器accuracy为0.4664429530201342 09/06/2022 23:43:44 [INFO] bilstm_attention: 初始分类器召回率为0.24035087719298245 09/06/2022 23:43:44 [INFO] bilstm_attention: 初始分类器precision为0.1123355263157895 09/06/2022 23:43:44 [INFO] bilstm_attention: 初始分类器f1_score为0.15088844742849322 09/06/2022 23:43:46 [INFO] bilstm_attention: 开始第1次重训练 09/06/2022 23:44:05 [INFO] bilstm_attention: 开始第2次重训练 09/06/2022 23:44:23 [INFO] bilstm_attention: 开始第3次重训练 09/06/2022 23:44:42 [INFO] bilstm_attention: 开始第4次重训练 09/06/2022 23:45:01 [INFO] bilstm_attention: 开始第5次重训练 09/06/2022 23:45:20 [INFO] bilstm_attention: 开始第6次重训练 09/06/2022 23:46:04 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.4664429530201342 09/06/2022 23:46:04 [INFO] bilstm_attention: 训练完成,测试集召回率为0.24035087719298245 09/06/2022 23:46:04 [INFO] bilstm_attention: 训练完成,测试集Precision为0.1123355263157895 09/06/2022 23:46:04 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.15088844742849322 09/06/2022 23:47:34 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/06/2022 23:47:36 [INFO] data_processor: 正在对原始数据进行数据扩增 09/06/2022 23:47:36 [INFO] data_processor: 正在统计原始数据的标签类型 09/06/2022 23:47:36 [INFO] data_processor: 正在制作词表 09/06/2022 23:47:36 [INFO] data_processor: 正在获取词向量 09/06/2022 23:47:36 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/06/2022 23:47:36 [INFO] bilstm_attention: pytorch 初始化 09/06/2022 23:47:36 [INFO] bilstm_attention: 模型初始化 09/06/2022 23:47:36 [INFO] bilstm_attention: 开始训练基础分类器 09/07/2022 00:06:09 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/07/2022 00:06:10 [INFO] data_processor: 正在对原始数据进行数据扩增 09/07/2022 00:06:10 [INFO] data_processor: 正在统计原始数据的标签类型 09/07/2022 00:06:10 [INFO] data_processor: 正在制作词表 09/07/2022 00:06:10 [INFO] data_processor: 正在获取词向量 09/07/2022 00:06:10 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/07/2022 00:06:10 [INFO] bilstm_attention: pytorch 初始化 09/07/2022 00:06:10 [INFO] bilstm_attention: 模型初始化 09/07/2022 00:06:10 [INFO] bilstm_attention: 开始训练基础分类器 09/07/2022 00:06:22 [INFO] bilstm_attention: 初始分类器accuracy为0.4664429530201342 09/07/2022 00:06:22 [INFO] bilstm_attention: 初始分类器召回率为0.26258040935672505 09/07/2022 00:06:22 [INFO] bilstm_attention: 初始分类器precision为0.16590133185527922 09/07/2022 00:06:22 [INFO] bilstm_attention: 初始分类器f1_score为0.1871790422476922 09/07/2022 00:06:24 [INFO] bilstm_attention: 开始第1次重训练 09/07/2022 00:06:43 [INFO] bilstm_attention: 开始第2次重训练 09/07/2022 00:07:12 [INFO] bilstm_attention: 开始第3次重训练 09/07/2022 00:07:44 [INFO] bilstm_attention: 开始第4次重训练 09/07/2022 00:08:20 [INFO] bilstm_attention: 开始第5次重训练 09/07/2022 00:08:54 [INFO] bilstm_attention: 开始第6次重训练 09/07/2022 00:09:28 [INFO] bilstm_attention: 开始第7次重训练 09/07/2022 00:10:04 [INFO] bilstm_attention: 开始第8次重训练 09/07/2022 00:10:39 [INFO] bilstm_attention: 开始第9次重训练 09/07/2022 00:11:16 [INFO] bilstm_attention: 开始第10次重训练 09/07/2022 00:11:55 [INFO] bilstm_attention: 开始第11次重训练 09/07/2022 00:12:30 [INFO] bilstm_attention: 开始第12次重训练 09/07/2022 00:13:06 [INFO] bilstm_attention: 开始第13次重训练 09/07/2022 00:20:28 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/07/2022 00:20:29 [INFO] data_processor: 正在对原始数据进行数据扩增 09/07/2022 00:20:29 [INFO] data_processor: 正在统计原始数据的标签类型 09/07/2022 00:20:29 [INFO] data_processor: 正在制作词表 09/07/2022 00:20:29 [INFO] data_processor: 正在获取词向量 09/07/2022 00:20:29 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/07/2022 00:20:29 [INFO] bilstm_attention: pytorch 初始化 09/07/2022 00:20:29 [INFO] bilstm_attention: 模型初始化 09/07/2022 00:20:29 [INFO] bilstm_attention: 开始训练基础分类器 09/07/2022 00:20:41 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/07/2022 00:20:42 [INFO] data_processor: 正在对原始数据进行数据扩增 09/07/2022 00:20:42 [INFO] data_processor: 正在统计原始数据的标签类型 09/07/2022 00:20:42 [INFO] data_processor: 正在制作词表 09/07/2022 00:20:42 [INFO] data_processor: 正在获取词向量 09/07/2022 00:20:43 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/07/2022 00:20:43 [INFO] bilstm_attention: pytorch 初始化 09/07/2022 00:20:43 [INFO] bilstm_attention: 模型初始化 09/07/2022 00:20:43 [INFO] bilstm_attention: 开始训练基础分类器 09/07/2022 00:20:45 [INFO] bilstm_attention: 初始分类器accuracy为0.46464646464646464 09/07/2022 00:20:45 [INFO] bilstm_attention: 初始分类器召回率为0.2265808596165739 09/07/2022 00:20:45 [INFO] bilstm_attention: 初始分类器precision为0.16216422466422467 09/07/2022 00:20:45 [INFO] bilstm_attention: 初始分类器f1_score为0.18099461832707991 09/07/2022 00:20:46 [INFO] bilstm_attention: 开始第1次重训练 09/07/2022 00:20:50 [INFO] bilstm_attention: 开始第2次重训练 09/07/2022 00:20:56 [INFO] bilstm_attention: 开始第3次重训练 09/07/2022 00:21:03 [INFO] bilstm_attention: 开始第4次重训练 09/07/2022 00:21:10 [INFO] bilstm_attention: 开始第5次重训练 09/07/2022 00:21:17 [INFO] bilstm_attention: 开始第6次重训练 09/07/2022 00:21:25 [INFO] bilstm_attention: 开始第7次重训练 09/07/2022 00:21:33 [INFO] bilstm_attention: 开始第8次重训练 09/07/2022 00:21:41 [INFO] bilstm_attention: 开始第9次重训练 09/07/2022 00:21:58 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.29292929292929293 09/07/2022 00:21:58 [INFO] bilstm_attention: 训练完成,测试集召回率为0.2952380952380952 09/07/2022 00:21:58 [INFO] bilstm_attention: 训练完成,测试集Precision为0.08824404761904761 09/07/2022 00:21:58 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.13490381798652476 09/07/2022 00:28:18 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/07/2022 00:28:20 [INFO] data_processor: 正在对原始数据进行数据扩增 09/07/2022 00:28:20 [INFO] data_processor: 正在统计原始数据的标签类型 09/07/2022 00:28:20 [INFO] data_processor: 正在制作词表 09/07/2022 00:28:20 [INFO] data_processor: 正在获取词向量 09/07/2022 00:28:20 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/07/2022 00:28:20 [INFO] bilstm_attention: pytorch 初始化 09/07/2022 00:28:20 [INFO] bilstm_attention: 模型初始化 09/07/2022 00:28:20 [INFO] bilstm_attention: 开始训练基础分类器 09/07/2022 00:28:29 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/07/2022 00:28:31 [INFO] data_processor: 正在对原始数据进行数据扩增 09/07/2022 00:28:31 [INFO] data_processor: 正在统计原始数据的标签类型 09/07/2022 00:28:31 [INFO] data_processor: 正在制作词表 09/07/2022 00:28:31 [INFO] data_processor: 正在获取词向量 09/07/2022 00:28:31 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/07/2022 00:28:31 [INFO] bilstm_attention: pytorch 初始化 09/07/2022 00:28:31 [INFO] bilstm_attention: 模型初始化 09/07/2022 00:28:31 [INFO] bilstm_attention: 开始训练基础分类器 09/07/2022 00:28:33 [INFO] bilstm_attention: 初始分类器accuracy为0.494949494949495 09/07/2022 00:28:33 [INFO] bilstm_attention: 初始分类器召回率为0.24995748299319726 09/07/2022 00:28:33 [INFO] bilstm_attention: 初始分类器precision为0.22051282051282053 09/07/2022 00:28:33 [INFO] bilstm_attention: 初始分类器f1_score为0.21254877845266865 09/07/2022 00:28:34 [INFO] bilstm_attention: 开始第1次重训练 09/07/2022 00:28:38 [INFO] bilstm_attention: 开始第2次重训练 09/07/2022 00:28:45 [INFO] bilstm_attention: 开始第3次重训练 09/07/2022 00:28:52 [INFO] bilstm_attention: 开始第4次重训练 09/07/2022 00:29:00 [INFO] bilstm_attention: 开始第5次重训练 09/07/2022 00:29:09 [INFO] bilstm_attention: 开始第6次重训练 09/07/2022 00:29:17 [INFO] bilstm_attention: 开始第7次重训练 09/07/2022 00:29:25 [INFO] bilstm_attention: 开始第8次重训练 09/07/2022 00:29:34 [INFO] bilstm_attention: 开始第9次重训练 09/07/2022 00:29:42 [INFO] bilstm_attention: 开始第10次重训练 09/07/2022 00:29:50 [INFO] bilstm_attention: 开始第11次重训练 09/07/2022 00:29:59 [INFO] bilstm_attention: 开始第12次重训练 09/07/2022 00:30:07 [INFO] bilstm_attention: 开始第13次重训练 09/07/2022 00:30:25 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.48484848484848486 09/07/2022 00:30:25 [INFO] bilstm_attention: 训练完成,测试集召回率为0.2901089981447124 09/07/2022 00:30:25 [INFO] bilstm_attention: 训练完成,测试集Precision为0.23915515701229986 09/07/2022 00:30:25 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.253612168705048 09/07/2022 00:31:02 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/07/2022 00:31:03 [INFO] data_processor: 正在对原始数据进行数据扩增 09/07/2022 00:31:03 [INFO] data_processor: 正在统计原始数据的标签类型 09/07/2022 00:31:03 [INFO] data_processor: 正在制作词表 09/07/2022 00:31:03 [INFO] data_processor: 正在获取词向量 09/07/2022 00:31:03 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/07/2022 00:31:03 [INFO] bilstm_attention: pytorch 初始化 09/07/2022 00:31:03 [INFO] bilstm_attention: 模型初始化 09/07/2022 00:31:03 [INFO] bilstm_attention: 开始训练基础分类器 09/07/2022 00:31:18 [INFO] bilstm_attention: 初始分类器accuracy为0.4664429530201342 09/07/2022 00:31:18 [INFO] bilstm_attention: 初始分类器召回率为0.24035087719298245 09/07/2022 00:31:18 [INFO] bilstm_attention: 初始分类器precision为0.1123355263157895 09/07/2022 00:31:18 [INFO] bilstm_attention: 初始分类器f1_score为0.15088844742849322 09/07/2022 00:31:21 [INFO] bilstm_attention: 开始第1次重训练 09/07/2022 00:31:42 [INFO] bilstm_attention: 开始第2次重训练 09/07/2022 00:32:12 [INFO] bilstm_attention: 开始第3次重训练 09/07/2022 00:32:44 [INFO] bilstm_attention: 开始第4次重训练 09/07/2022 00:33:16 [INFO] bilstm_attention: 开始第5次重训练 09/07/2022 00:33:50 [INFO] bilstm_attention: 开始第6次重训练 09/07/2022 00:34:26 [INFO] bilstm_attention: 开始第7次重训练 09/07/2022 00:35:01 [INFO] bilstm_attention: 开始第8次重训练 09/07/2022 00:35:39 [INFO] bilstm_attention: 开始第9次重训练 09/07/2022 00:36:15 [INFO] bilstm_attention: 开始第10次重训练 09/07/2022 00:36:55 [INFO] bilstm_attention: 开始第11次重训练 09/07/2022 00:37:32 [INFO] bilstm_attention: 开始第12次重训练 09/07/2022 00:38:09 [INFO] bilstm_attention: 开始第13次重训练 09/07/2022 00:39:23 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.4664429530201342 09/07/2022 00:39:23 [INFO] bilstm_attention: 训练完成,测试集召回率为0.24035087719298245 09/07/2022 00:39:23 [INFO] bilstm_attention: 训练完成,测试集Precision为0.1123355263157895 09/07/2022 00:39:23 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.15088844742849322 09/08/2022 18:59:58 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/08/2022 19:00:05 [INFO] data_processor: 正在对原始数据进行数据扩增 09/08/2022 19:00:05 [INFO] data_processor: 正在统计原始数据的标签类型 09/08/2022 19:00:05 [INFO] data_processor: 正在制作词表 09/08/2022 19:00:05 [INFO] data_processor: 正在获取词向量 09/08/2022 19:00:05 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/08/2022 19:00:05 [INFO] bilstm_attention: pytorch 初始化 09/08/2022 19:00:05 [INFO] bilstm_attention: 模型初始化 09/08/2022 19:00:05 [INFO] bilstm_attention: 开始训练基础分类器 09/08/2022 19:00:27 [INFO] bilstm_attention: 初始分类器accuracy为0.4664429530201342 09/08/2022 19:00:27 [INFO] bilstm_attention: 初始分类器召回率为0.24035087719298245 09/08/2022 19:00:27 [INFO] bilstm_attention: 初始分类器precision为0.1123355263157895 09/08/2022 19:00:27 [INFO] bilstm_attention: 初始分类器f1_score为0.15088844742849322 09/08/2022 20:24:58 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/08/2022 20:25:00 [INFO] data_processor: 正在对原始数据进行数据扩增 09/08/2022 20:25:00 [INFO] data_processor: 正在统计原始数据的标签类型 09/08/2022 20:25:00 [INFO] data_processor: 正在制作词表 09/08/2022 20:25:00 [INFO] data_processor: 正在获取词向量 09/08/2022 20:25:00 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/08/2022 20:25:00 [INFO] bilstm_attention: pytorch 初始化 09/08/2022 20:25:00 [INFO] bilstm_attention: 模型初始化 09/08/2022 20:25:00 [INFO] bilstm_attention: 开始训练基础分类器 09/08/2022 20:25:15 [INFO] bilstm_attention: 初始分类器accuracy为0.4664429530201342 09/08/2022 20:25:15 [INFO] bilstm_attention: 初始分类器召回率为0.24035087719298245 09/08/2022 20:25:15 [INFO] bilstm_attention: 初始分类器precision为0.1123355263157895 09/08/2022 20:25:15 [INFO] bilstm_attention: 初始分类器f1_score为0.15088844742849322 09/08/2022 21:01:54 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/08/2022 21:01:56 [INFO] data_processor: 正在对原始数据进行数据扩增 09/08/2022 21:01:56 [INFO] data_processor: 正在统计原始数据的标签类型 09/08/2022 21:01:56 [INFO] data_processor: 正在制作词表 09/08/2022 21:01:56 [INFO] data_processor: 正在获取词向量 09/08/2022 21:01:56 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/08/2022 21:01:56 [INFO] bilstm_attention: pytorch 初始化 09/08/2022 21:01:56 [INFO] bilstm_attention: 模型初始化 09/08/2022 21:01:56 [INFO] bilstm_attention: 开始训练基础分类器 09/08/2022 21:02:10 [INFO] bilstm_attention: 初始分类器accuracy为0.4664429530201342 09/08/2022 21:02:10 [INFO] bilstm_attention: 初始分类器召回率为0.24035087719298245 09/08/2022 21:02:10 [INFO] bilstm_attention: 初始分类器precision为0.1123355263157895 09/08/2022 21:02:10 [INFO] bilstm_attention: 初始分类器f1_score为0.15088844742849322 09/08/2022 21:02:12 [INFO] bilstm_attention: 开始第1次重训练 09/08/2022 21:02:33 [INFO] bilstm_attention: 开始第2次重训练 09/08/2022 21:03:01 [INFO] bilstm_attention: 开始第3次重训练 09/08/2022 21:03:29 [INFO] bilstm_attention: 开始第4次重训练 09/08/2022 21:03:58 [INFO] bilstm_attention: 开始第5次重训练 09/08/2022 21:04:30 [INFO] bilstm_attention: 开始第6次重训练 09/08/2022 21:05:03 [INFO] bilstm_attention: 开始第7次重训练 09/08/2022 21:05:35 [INFO] bilstm_attention: 开始第8次重训练 09/08/2022 21:06:08 [INFO] bilstm_attention: 开始第9次重训练 09/08/2022 21:06:42 [INFO] bilstm_attention: 开始第10次重训练 09/08/2022 21:07:17 [INFO] bilstm_attention: 开始第11次重训练 09/08/2022 21:07:52 [INFO] bilstm_attention: 开始第12次重训练 09/08/2022 21:08:25 [INFO] bilstm_attention: 开始第13次重训练 09/08/2022 21:09:34 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.4664429530201342 09/08/2022 21:09:34 [INFO] bilstm_attention: 训练完成,测试集召回率为0.24035087719298245 09/08/2022 21:09:34 [INFO] bilstm_attention: 训练完成,测试集Precision为0.1123355263157895 09/08/2022 21:09:34 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.15088844742849322 09/08/2022 21:22:57 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/08/2022 21:22:59 [INFO] data_processor: 正在对原始数据进行数据扩增 09/08/2022 21:24:19 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/08/2022 21:24:22 [INFO] data_processor: 正在对原始数据进行数据扩增 09/08/2022 21:39:04 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/08/2022 21:39:06 [INFO] data_processor: 正在对原始数据进行数据扩增 09/08/2022 21:39:28 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/08/2022 21:39:29 [INFO] data_processor: 正在对原始数据进行数据扩增 09/08/2022 21:39:29 [INFO] data_processor: 正在统计原始数据的标签类型 09/08/2022 21:39:29 [INFO] data_processor: 正在制作词表 09/08/2022 21:39:29 [INFO] data_processor: 正在获取词向量 09/08/2022 21:39:29 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/08/2022 21:39:29 [INFO] bilstm_attention: pytorch 初始化 09/08/2022 21:39:29 [INFO] bilstm_attention: 模型初始化 09/08/2022 21:39:29 [INFO] bilstm_attention: 开始训练基础分类器 09/08/2022 21:39:44 [INFO] bilstm_attention: 初始分类器accuracy为0.4664429530201342 09/08/2022 21:39:44 [INFO] bilstm_attention: 初始分类器召回率为0.24035087719298245 09/08/2022 21:39:44 [INFO] bilstm_attention: 初始分类器precision为0.1123355263157895 09/08/2022 21:39:44 [INFO] bilstm_attention: 初始分类器f1_score为0.15088844742849322 09/08/2022 21:39:46 [INFO] bilstm_attention: 开始第1次重训练 09/08/2022 21:40:04 [INFO] bilstm_attention: 开始第2次重训练 09/08/2022 21:40:22 [INFO] bilstm_attention: 开始第3次重训练 09/08/2022 21:40:39 [INFO] bilstm_attention: 开始第4次重训练 09/08/2022 21:40:56 [INFO] bilstm_attention: 开始第5次重训练 09/08/2022 21:41:18 [INFO] bilstm_attention: 开始第6次重训练 09/08/2022 21:41:59 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.4664429530201342 09/08/2022 21:41:59 [INFO] bilstm_attention: 训练完成,测试集召回率为0.24035087719298245 09/08/2022 21:41:59 [INFO] bilstm_attention: 训练完成,测试集Precision为0.1123355263157895 09/08/2022 21:41:59 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.15088844742849322 09/08/2022 22:12:26 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/08/2022 22:12:28 [INFO] data_processor: 正在对原始数据进行数据扩增 09/08/2022 22:12:28 [INFO] data_processor: 正在统计原始数据的标签类型 09/08/2022 22:12:28 [INFO] data_processor: 正在制作词表 09/08/2022 22:12:28 [INFO] data_processor: 正在获取词向量 09/08/2022 22:12:28 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/08/2022 22:12:28 [INFO] bilstm_attention: pytorch 初始化 09/08/2022 22:12:28 [INFO] bilstm_attention: 模型初始化 09/08/2022 22:12:28 [INFO] bilstm_attention: 开始训练基础分类器 09/08/2022 22:12:42 [INFO] bilstm_attention: 初始分类器accuracy为0.4664429530201342 09/08/2022 22:12:42 [INFO] bilstm_attention: 初始分类器召回率为0.24035087719298245 09/08/2022 22:12:42 [INFO] bilstm_attention: 初始分类器precision为0.1123355263157895 09/08/2022 22:12:42 [INFO] bilstm_attention: 初始分类器f1_score为0.15088844742849322 09/08/2022 22:12:44 [INFO] bilstm_attention: 开始第1次重训练 09/08/2022 22:13:01 [INFO] bilstm_attention: 开始第2次重训练 09/08/2022 22:13:18 [INFO] bilstm_attention: 开始第3次重训练 09/08/2022 22:13:36 [INFO] bilstm_attention: 开始第4次重训练 09/08/2022 22:13:54 [INFO] bilstm_attention: 开始第5次重训练 09/08/2022 22:14:14 [INFO] bilstm_attention: 开始第6次重训练 09/08/2022 22:14:54 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.4664429530201342 09/08/2022 22:14:54 [INFO] bilstm_attention: 训练完成,测试集召回率为0.24035087719298245 09/08/2022 22:14:54 [INFO] bilstm_attention: 训练完成,测试集Precision为0.1123355263157895 09/08/2022 22:14:54 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.15088844742849322 09/08/2022 22:20:45 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/08/2022 22:20:47 [INFO] data_processor: 正在对原始数据进行数据扩增 09/09/2022 11:51:52 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/09/2022 11:51:56 [INFO] data_processor: 正在对原始数据进行数据扩增 09/09/2022 11:52:20 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/09/2022 11:52:23 [INFO] data_processor: 正在对原始数据进行数据扩增 09/09/2022 11:52:23 [INFO] data_processor: 正在统计原始数据的标签类型 09/09/2022 12:17:15 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/09/2022 12:17:17 [INFO] data_processor: 正在从数据库读取原始数据 09/09/2022 12:18:11 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/09/2022 12:18:13 [INFO] data_processor: 正在从数据库读取原始数据 09/09/2022 12:18:48 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/09/2022 12:18:50 [INFO] data_processor: 正在从数据库读取原始数据 09/09/2022 12:19:43 [INFO] data_processor: 正在制作词表 09/09/2022 12:19:43 [INFO] data_processor: 正在获取词向量 09/09/2022 12:19:43 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/09/2022 12:19:43 [INFO] bilstm_attention: pytorch 初始化 09/09/2022 12:19:43 [INFO] bilstm_attention: 模型初始化 09/09/2022 12:19:43 [INFO] bilstm_attention: 开始训练基础分类器 09/09/2022 12:19:49 [INFO] bilstm_attention: 初始分类器accuracy为0.5151515151515151 09/09/2022 12:19:49 [INFO] bilstm_attention: 初始分类器召回率为0.21130952380952378 09/09/2022 12:19:49 [INFO] bilstm_attention: 初始分类器precision为0.11547619047619048 09/09/2022 12:19:49 [INFO] bilstm_attention: 初始分类器f1_score为0.1466010410109789 09/09/2022 13:11:17 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/09/2022 13:11:19 [INFO] data_processor: 正在从数据库读取原始数据 09/09/2022 13:12:11 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/09/2022 13:12:13 [INFO] data_processor: 正在从数据库读取原始数据 09/09/2022 14:06:59 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/09/2022 14:07:00 [INFO] data_processor: 正在从数据库读取原始数据 09/09/2022 14:07:19 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/09/2022 14:07:20 [INFO] data_processor: 正在从数据库读取原始数据 09/09/2022 14:07:20 [INFO] data_processor: 正在制作词表 09/09/2022 14:07:20 [INFO] data_processor: 正在获取词向量 09/09/2022 14:07:20 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/09/2022 14:07:20 [INFO] bilstm_attention: pytorch 初始化 09/09/2022 14:07:20 [INFO] bilstm_attention: 模型初始化 09/09/2022 14:07:20 [INFO] bilstm_attention: 开始训练基础分类器 09/09/2022 14:07:26 [INFO] bilstm_attention: 初始分类器accuracy为0.5656565656565656 09/09/2022 14:07:26 [INFO] bilstm_attention: 初始分类器召回率为0.4084325396825398 09/09/2022 14:07:26 [INFO] bilstm_attention: 初始分类器precision为0.358784965034965 09/09/2022 14:07:26 [INFO] bilstm_attention: 初始分类器f1_score为0.37011215873589204 09/09/2022 17:17:53 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/09/2022 17:17:58 [INFO] data_processor: 正在从数据库读取原始数据 09/09/2022 17:18:23 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/09/2022 17:18:28 [INFO] data_processor: 正在从数据库读取原始数据 09/09/2022 17:18:28 [INFO] data_processor: 正在制作词表 09/09/2022 17:18:28 [INFO] data_processor: 正在获取词向量 09/09/2022 17:18:28 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/09/2022 17:18:28 [INFO] bilstm_attention: pytorch 初始化 09/09/2022 17:18:28 [INFO] bilstm_attention: 模型初始化 09/09/2022 17:18:28 [INFO] bilstm_attention: 开始训练基础分类器 09/09/2022 17:18:37 [INFO] bilstm_attention: 初始分类器accuracy为0.5454545454545454 09/09/2022 17:18:37 [INFO] bilstm_attention: 初始分类器召回率为0.3697420634920635 09/09/2022 17:18:37 [INFO] bilstm_attention: 初始分类器precision为0.34880298273155413 09/09/2022 17:18:37 [INFO] bilstm_attention: 初始分类器f1_score为0.3385680109364321 09/09/2022 17:24:43 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/09/2022 17:24:48 [INFO] data_processor: 正在从数据库读取原始数据 09/09/2022 17:29:06 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/09/2022 17:29:11 [INFO] data_processor: 正在制作词表 09/09/2022 17:29:11 [INFO] data_processor: 正在获取词向量 09/09/2022 17:29:11 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/09/2022 17:29:11 [INFO] bilstm_attention: pytorch 初始化 09/09/2022 17:29:11 [INFO] bilstm_attention: 模型初始化 09/09/2022 17:29:11 [INFO] bilstm_attention: 开始训练基础分类器 09/09/2022 17:29:21 [INFO] bilstm_attention: 初始分类器accuracy为0.5454545454545454 09/09/2022 17:29:21 [INFO] bilstm_attention: 初始分类器召回率为0.3697420634920635 09/09/2022 17:29:21 [INFO] bilstm_attention: 初始分类器precision为0.34880298273155413 09/09/2022 17:29:21 [INFO] bilstm_attention: 初始分类器f1_score为0.3385680109364321 INFO:root:开始数据扩增 09/09/2022 18:59:36 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/09/2022 18:59:43 [INFO] data_processor: 正在制作词表 09/09/2022 18:59:43 [INFO] data_processor: 正在获取词向量 09/09/2022 18:59:43 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/09/2022 18:59:43 [INFO] bilstm_attention: pytorch 初始化 09/09/2022 18:59:43 [INFO] bilstm_attention: 模型初始化 09/09/2022 18:59:43 [INFO] bilstm_attention: 开始训练基础分类器 09/09/2022 19:14:25 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/09/2022 19:14:32 [INFO] data_processor: 正在制作词表 09/09/2022 19:14:32 [INFO] data_processor: 正在获取词向量 09/09/2022 19:14:32 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/09/2022 19:14:32 [INFO] bilstm_attention: pytorch 初始化 09/09/2022 19:14:32 [INFO] bilstm_attention: 模型初始化 09/09/2022 19:14:32 [INFO] bilstm_attention: 开始训练基础分类器 09/09/2022 19:16:50 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/09/2022 19:16:57 [INFO] data_processor: 正在制作词表 09/09/2022 19:16:57 [INFO] data_processor: 正在获取词向量 09/09/2022 19:16:57 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/09/2022 19:16:57 [INFO] bilstm_attention: pytorch 初始化 09/09/2022 19:16:57 [INFO] bilstm_attention: 模型初始化 09/09/2022 19:16:57 [INFO] bilstm_attention: 开始训练基础分类器 09/09/2022 19:18:14 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/09/2022 19:18:21 [INFO] data_processor: 正在制作词表 09/09/2022 19:18:21 [INFO] data_processor: 正在获取词向量 09/09/2022 19:18:21 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/09/2022 19:18:21 [INFO] bilstm_attention: pytorch 初始化 09/09/2022 19:18:21 [INFO] bilstm_attention: 模型初始化 09/09/2022 19:18:21 [INFO] bilstm_attention: 开始训练基础分类器 09/09/2022 19:19:45 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/09/2022 19:19:50 [INFO] data_processor: 正在制作词表 09/09/2022 19:19:50 [INFO] data_processor: 正在获取词向量 09/09/2022 19:19:50 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/09/2022 19:19:50 [INFO] bilstm_attention: pytorch 初始化 09/09/2022 19:19:50 [INFO] bilstm_attention: 模型初始化 09/09/2022 19:19:50 [INFO] bilstm_attention: 开始训练基础分类器 09/09/2022 19:20:00 [INFO] bilstm_attention: 初始分类器accuracy为0.5454545454545454 09/09/2022 19:20:00 [INFO] bilstm_attention: 初始分类器召回率为0.3697420634920635 09/09/2022 19:20:00 [INFO] bilstm_attention: 初始分类器precision为0.34880298273155413 09/09/2022 19:20:00 [INFO] bilstm_attention: 初始分类器f1_score为0.3385680109364321 09/09/2022 19:20:56 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/09/2022 19:21:00 [INFO] data_processor: 正在制作词表 09/09/2022 19:21:00 [INFO] data_processor: 正在获取词向量 09/09/2022 19:21:00 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/09/2022 19:21:00 [INFO] bilstm_attention: pytorch 初始化 09/09/2022 19:21:00 [INFO] bilstm_attention: 模型初始化 09/09/2022 19:21:00 [INFO] bilstm_attention: 开始训练基础分类器 09/09/2022 19:21:31 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/09/2022 19:21:39 [INFO] data_processor: 正在制作词表 09/09/2022 19:21:39 [INFO] data_processor: 正在获取词向量 09/09/2022 19:21:39 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/09/2022 19:21:39 [INFO] bilstm_attention: pytorch 初始化 09/09/2022 19:21:39 [INFO] bilstm_attention: 模型初始化 09/09/2022 19:21:39 [INFO] bilstm_attention: 开始训练基础分类器 09/09/2022 19:23:12 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/09/2022 19:23:20 [INFO] data_processor: 正在制作词表 09/09/2022 19:23:20 [INFO] data_processor: 正在获取词向量 09/09/2022 19:23:20 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/09/2022 19:23:20 [INFO] bilstm_attention: pytorch 初始化 09/09/2022 19:23:20 [INFO] bilstm_attention: 模型初始化 09/09/2022 19:23:20 [INFO] bilstm_attention: 开始训练基础分类器 09/09/2022 19:25:39 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/09/2022 19:25:47 [INFO] data_processor: 正在制作词表 09/09/2022 19:25:47 [INFO] data_processor: 正在获取词向量 09/09/2022 19:25:47 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/09/2022 19:25:47 [INFO] bilstm_attention: pytorch 初始化 09/09/2022 19:25:47 [INFO] bilstm_attention: 模型初始化 09/09/2022 19:25:47 [INFO] bilstm_attention: 开始训练基础分类器 09/09/2022 19:28:18 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/09/2022 19:28:23 [INFO] data_processor: 正在制作词表 09/09/2022 19:28:23 [INFO] data_processor: 正在获取词向量 09/09/2022 19:28:23 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/09/2022 19:28:23 [INFO] bilstm_attention: pytorch 初始化 09/09/2022 19:28:23 [INFO] bilstm_attention: 模型初始化 09/09/2022 19:28:23 [INFO] bilstm_attention: 开始训练基础分类器 09/09/2022 19:28:32 [INFO] bilstm_attention: 初始分类器accuracy为0.5454545454545454 09/09/2022 19:28:32 [INFO] bilstm_attention: 初始分类器召回率为0.3697420634920635 09/09/2022 19:28:32 [INFO] bilstm_attention: 初始分类器precision为0.34880298273155413 09/09/2022 19:28:32 [INFO] bilstm_attention: 初始分类器f1_score为0.3385680109364321 09/09/2022 19:45:58 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/09/2022 19:46:03 [INFO] data_processor: 正在制作词表 09/09/2022 19:46:03 [INFO] data_processor: 正在获取词向量 09/09/2022 19:46:03 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/09/2022 19:46:03 [INFO] bilstm_attention: pytorch 初始化 09/09/2022 19:46:03 [INFO] bilstm_attention: 模型初始化 09/09/2022 19:46:03 [INFO] bilstm_attention: 开始训练基础分类器 09/09/2022 19:46:06 [INFO] bilstm_attention: 初始分类器accuracy为0.5252525252525253 09/09/2022 19:46:06 [INFO] bilstm_attention: 初始分类器召回率为0.2261904761904762 09/09/2022 19:46:06 [INFO] bilstm_attention: 初始分类器precision为0.125 09/09/2022 19:46:06 [INFO] bilstm_attention: 初始分类器f1_score为0.15831683844106204 09/09/2022 20:05:28 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/09/2022 20:05:35 [INFO] data_processor: 开始数据扩增 09/09/2022 20:11:49 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/09/2022 20:11:53 [INFO] data_processor: 开始数据扩增 09/09/2022 20:13:01 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/09/2022 20:13:05 [INFO] data_processor: 正在制作词表 09/09/2022 20:13:05 [INFO] data_processor: 正在获取词向量 09/09/2022 20:13:05 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/09/2022 20:13:05 [INFO] bilstm_attention: pytorch 初始化 09/09/2022 20:13:05 [INFO] bilstm_attention: 模型初始化 09/09/2022 20:13:05 [INFO] bilstm_attention: 开始训练基础分类器 09/09/2022 20:13:08 [INFO] bilstm_attention: 初始分类器accuracy为0.5252525252525253 09/09/2022 20:13:08 [INFO] bilstm_attention: 初始分类器召回率为0.2261904761904762 09/09/2022 20:13:08 [INFO] bilstm_attention: 初始分类器precision为0.125 09/09/2022 20:13:08 [INFO] bilstm_attention: 初始分类器f1_score为0.15831683844106204 09/09/2022 20:13:27 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/09/2022 20:13:32 [INFO] data_processor: 正在制作词表 09/09/2022 20:13:32 [INFO] data_processor: 正在获取词向量 09/09/2022 20:13:32 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/09/2022 20:13:32 [INFO] bilstm_attention: pytorch 初始化 09/09/2022 20:13:32 [INFO] bilstm_attention: 模型初始化 09/09/2022 20:13:32 [INFO] bilstm_attention: 开始训练基础分类器 09/09/2022 20:13:34 [INFO] bilstm_attention: 初始分类器accuracy为0.5252525252525253 09/09/2022 20:13:34 [INFO] bilstm_attention: 初始分类器召回率为0.2261904761904762 09/09/2022 20:13:34 [INFO] bilstm_attention: 初始分类器precision为0.125 09/09/2022 20:13:34 [INFO] bilstm_attention: 初始分类器f1_score为0.15831683844106204 09/09/2022 21:11:13 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/09/2022 21:11:21 [INFO] data_processor: 正在制作词表 09/09/2022 21:11:21 [INFO] data_processor: 正在获取词向量 09/09/2022 21:11:21 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/09/2022 21:11:21 [INFO] bilstm_attention: pytorch 初始化 09/09/2022 21:11:21 [INFO] bilstm_attention: 模型初始化 09/09/2022 21:11:21 [INFO] bilstm_attention: 开始训练基础分类器 09/09/2022 21:14:48 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/09/2022 21:14:58 [INFO] data_processor: 正在制作词表 09/09/2022 21:14:58 [INFO] data_processor: 正在获取词向量 09/09/2022 21:14:58 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/09/2022 21:14:58 [INFO] bilstm_attention: pytorch 初始化 09/09/2022 21:14:58 [INFO] bilstm_attention: 模型初始化 09/09/2022 21:14:58 [INFO] bilstm_attention: 开始训练基础分类器 09/09/2022 21:16:42 [INFO] bilstm_attention: 初始分类器accuracy为0.5454545454545454 09/09/2022 21:16:42 [INFO] bilstm_attention: 初始分类器召回率为0.3697420634920635 09/09/2022 21:16:42 [INFO] bilstm_attention: 初始分类器precision为0.34880298273155413 09/09/2022 21:16:42 [INFO] bilstm_attention: 初始分类器f1_score为0.3385680109364321 09/09/2022 21:18:31 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/09/2022 21:18:39 [INFO] data_processor: 正在制作词表 09/09/2022 21:18:39 [INFO] data_processor: 正在获取词向量 09/09/2022 21:18:39 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/09/2022 21:18:39 [INFO] bilstm_attention: pytorch 初始化 09/09/2022 21:18:39 [INFO] bilstm_attention: 模型初始化 09/09/2022 21:18:39 [INFO] bilstm_attention: 开始训练基础分类器 09/09/2022 22:25:07 [INFO] data_processor: 开始数据扩增 09/10/2022 00:02:38 [INFO] data_processor: 开始数据扩增 09/10/2022 00:04:03 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 00:04:04 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 00:04:04 [INFO] data_processor: 正在制作词表 09/10/2022 00:04:04 [INFO] data_processor: 正在获取词向量 09/10/2022 00:04:04 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 00:04:04 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 00:04:04 [INFO] bilstm_attention: 模型初始化 09/10/2022 00:04:04 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 00:04:10 [INFO] bilstm_attention: 初始分类器accuracy为0.47474747474747475 09/10/2022 00:04:10 [INFO] bilstm_attention: 初始分类器召回率为0.3375595238095238 09/10/2022 00:04:10 [INFO] bilstm_attention: 初始分类器precision为0.36949675324675324 09/10/2022 00:04:10 [INFO] bilstm_attention: 初始分类器f1_score为0.3277452647725757 09/10/2022 00:06:23 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 00:06:24 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 00:06:24 [INFO] data_processor: 正在制作词表 09/10/2022 00:06:24 [INFO] data_processor: 正在获取词向量 09/10/2022 00:06:24 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 00:06:24 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 00:06:24 [INFO] bilstm_attention: 模型初始化 09/10/2022 00:06:24 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 00:06:33 [INFO] bilstm_attention: 初始分类器accuracy为0.43434343434343436 09/10/2022 00:06:33 [INFO] bilstm_attention: 初始分类器召回率为0.3374603174603174 09/10/2022 00:06:33 [INFO] bilstm_attention: 初始分类器precision为0.38812530062530065 09/10/2022 00:06:33 [INFO] bilstm_attention: 初始分类器f1_score为0.34124983326664 09/10/2022 16:22:42 [INFO] data_processor: 开始数据扩增 09/10/2022 16:28:20 [INFO] data_processor: 开始数据扩增 09/10/2022 16:35:24 [INFO] data_processor: 开始数据扩增 09/10/2022 16:36:47 [INFO] data_processor: 开始数据扩增 09/10/2022 16:39:41 [INFO] data_processor: 开始数据扩增 09/10/2022 16:41:09 [INFO] data_processor: 开始数据扩增 09/10/2022 16:46:10 [INFO] data_processor: 开始数据扩增 09/10/2022 16:48:11 [INFO] data_processor: 开始数据扩增 09/10/2022 16:49:30 [INFO] data_processor: 开始数据扩增 09/10/2022 16:51:51 [INFO] data_processor: 开始数据扩增 09/10/2022 16:53:05 [INFO] data_processor: 开始数据扩增 09/10/2022 16:53:45 [INFO] data_processor: 开始数据扩增 09/10/2022 16:54:15 [INFO] data_processor: 开始数据扩增 09/10/2022 16:55:05 [INFO] data_processor: 开始数据扩增 09/10/2022 16:56:52 [INFO] data_processor: 开始数据扩增 09/10/2022 16:58:30 [INFO] data_processor: 开始数据扩增 09/10/2022 17:00:01 [INFO] data_processor: 开始数据扩增 09/10/2022 17:00:55 [INFO] data_processor: 开始数据扩增 09/10/2022 17:03:03 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 17:03:05 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 17:03:05 [INFO] data_processor: 正在制作词表 09/10/2022 17:03:05 [INFO] data_processor: 正在获取词向量 09/10/2022 17:03:05 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 17:03:05 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 17:03:05 [INFO] bilstm_attention: 模型初始化 09/10/2022 17:03:05 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 17:03:31 [INFO] bilstm_attention: 初始分类器accuracy为0.3939393939393939 09/10/2022 17:03:31 [INFO] bilstm_attention: 初始分类器召回率为0.1880952380952381 09/10/2022 17:03:31 [INFO] bilstm_attention: 初始分类器precision为0.07797619047619049 09/10/2022 17:03:31 [INFO] bilstm_attention: 初始分类器f1_score为0.10903731189445474 09/10/2022 17:07:02 [INFO] data_processor: 开始数据扩增 09/10/2022 17:09:07 [INFO] data_processor: 开始数据扩增 09/10/2022 17:09:20 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 17:09:22 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 17:09:22 [INFO] data_processor: 正在制作词表 09/10/2022 17:09:22 [INFO] data_processor: 正在获取词向量 09/10/2022 17:09:22 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 17:09:22 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 17:09:22 [INFO] bilstm_attention: 模型初始化 09/10/2022 17:09:22 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 17:09:43 [INFO] bilstm_attention: 初始分类器accuracy为0.31313131313131315 09/10/2022 17:09:43 [INFO] bilstm_attention: 初始分类器召回率为0.2794642857142857 09/10/2022 17:09:43 [INFO] bilstm_attention: 初始分类器precision为0.15298742923742922 09/10/2022 17:09:43 [INFO] bilstm_attention: 初始分类器f1_score为0.18799931511065965 09/10/2022 17:14:26 [INFO] data_processor: 开始数据扩增 09/10/2022 17:19:10 [INFO] data_processor: 开始数据扩增 09/10/2022 17:20:57 [INFO] data_processor: 开始数据扩增 09/10/2022 17:22:28 [INFO] data_processor: 开始数据扩增 09/10/2022 17:23:00 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 17:23:02 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 17:23:02 [INFO] data_processor: 正在制作词表 09/10/2022 17:23:02 [INFO] data_processor: 正在获取词向量 09/10/2022 17:23:02 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 17:23:02 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 17:23:02 [INFO] bilstm_attention: 模型初始化 09/10/2022 17:23:02 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 17:23:22 [INFO] bilstm_attention: 初始分类器accuracy为0.40404040404040403 09/10/2022 17:23:22 [INFO] bilstm_attention: 初始分类器召回率为0.4488888888888889 09/10/2022 17:23:22 [INFO] bilstm_attention: 初始分类器precision为0.39345238095238094 09/10/2022 17:23:22 [INFO] bilstm_attention: 初始分类器f1_score为0.3833266468980754 09/10/2022 17:24:41 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 17:24:43 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 17:24:43 [INFO] data_processor: 正在制作词表 09/10/2022 17:24:43 [INFO] data_processor: 正在获取词向量 09/10/2022 17:24:43 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 17:24:43 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 17:24:43 [INFO] bilstm_attention: 模型初始化 09/10/2022 17:24:43 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 17:25:22 [INFO] bilstm_attention: 初始分类器accuracy为0.4444444444444444 09/10/2022 17:25:22 [INFO] bilstm_attention: 初始分类器召回率为0.4701190476190476 09/10/2022 17:25:22 [INFO] bilstm_attention: 初始分类器precision为0.43997732426303854 09/10/2022 17:25:22 [INFO] bilstm_attention: 初始分类器f1_score为0.42419291026433875 09/10/2022 17:25:59 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 17:26:01 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 17:26:01 [INFO] data_processor: 正在制作词表 09/10/2022 17:26:01 [INFO] data_processor: 正在获取词向量 09/10/2022 17:26:01 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 17:26:01 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 17:26:01 [INFO] bilstm_attention: 模型初始化 09/10/2022 17:26:01 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 17:27:39 [INFO] bilstm_attention: 初始分类器accuracy为0.4444444444444444 09/10/2022 17:27:39 [INFO] bilstm_attention: 初始分类器召回率为0.39551587301587304 09/10/2022 17:27:39 [INFO] bilstm_attention: 初始分类器precision为0.35523809523809524 09/10/2022 17:27:39 [INFO] bilstm_attention: 初始分类器f1_score为0.36248027416094647 09/10/2022 17:29:58 [INFO] data_processor: 开始数据扩增 09/10/2022 17:30:25 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 17:30:27 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 17:30:27 [INFO] data_processor: 正在制作词表 09/10/2022 17:30:27 [INFO] data_processor: 正在获取词向量 09/10/2022 17:30:27 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 17:30:27 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 17:30:27 [INFO] bilstm_attention: 模型初始化 09/10/2022 17:30:27 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 17:33:00 [INFO] bilstm_attention: 初始分类器accuracy为0.5050505050505051 09/10/2022 17:33:00 [INFO] bilstm_attention: 初始分类器召回率为0.48287698412698415 09/10/2022 17:33:00 [INFO] bilstm_attention: 初始分类器precision为0.43900226757369615 09/10/2022 17:33:00 [INFO] bilstm_attention: 初始分类器f1_score为0.43182365914508775 09/10/2022 17:38:03 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 17:38:05 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 17:38:05 [INFO] data_processor: 正在制作词表 09/10/2022 17:38:05 [INFO] data_processor: 正在获取词向量 09/10/2022 17:38:05 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 17:38:05 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 17:38:05 [INFO] bilstm_attention: 模型初始化 09/10/2022 17:38:05 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 17:40:39 [INFO] bilstm_attention: 初始分类器accuracy为0.5050505050505051 09/10/2022 17:40:39 [INFO] bilstm_attention: 初始分类器召回率为0.48287698412698415 09/10/2022 17:40:39 [INFO] bilstm_attention: 初始分类器precision为0.43900226757369615 09/10/2022 17:40:39 [INFO] bilstm_attention: 初始分类器f1_score为0.43182365914508775 09/10/2022 17:44:32 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 17:44:35 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 17:44:35 [INFO] data_processor: 正在制作词表 09/10/2022 17:44:35 [INFO] data_processor: 正在获取词向量 09/10/2022 17:44:35 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 17:44:35 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 17:44:35 [INFO] bilstm_attention: 模型初始化 09/10/2022 17:44:35 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 17:47:09 [INFO] bilstm_attention: 初始分类器accuracy为0.5050505050505051 09/10/2022 17:47:09 [INFO] bilstm_attention: 初始分类器召回率为0.48287698412698415 09/10/2022 17:47:09 [INFO] bilstm_attention: 初始分类器precision为0.43900226757369615 09/10/2022 17:47:09 [INFO] bilstm_attention: 初始分类器f1_score为0.43182365914508775 09/10/2022 17:49:20 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 17:49:22 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 17:49:22 [INFO] data_processor: 正在制作词表 09/10/2022 17:49:22 [INFO] data_processor: 正在获取词向量 09/10/2022 17:49:22 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 17:49:22 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 17:49:22 [INFO] bilstm_attention: 模型初始化 09/10/2022 17:49:22 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 17:51:52 [INFO] bilstm_attention: 初始分类器accuracy为0.5555555555555556 09/10/2022 17:51:52 [INFO] bilstm_attention: 初始分类器召回率为0.48638888888888887 09/10/2022 17:51:52 [INFO] bilstm_attention: 初始分类器precision为0.49824263038548755 09/10/2022 17:51:52 [INFO] bilstm_attention: 初始分类器f1_score为0.4796094006244382 09/10/2022 17:57:25 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 17:57:26 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 17:57:26 [INFO] data_processor: 正在制作词表 09/10/2022 17:57:26 [INFO] data_processor: 正在获取词向量 09/10/2022 17:57:26 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 17:57:26 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 17:57:26 [INFO] bilstm_attention: 模型初始化 09/10/2022 17:57:26 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 18:00:00 [INFO] bilstm_attention: 初始分类器accuracy为0.5656565656565656 09/10/2022 18:00:00 [INFO] bilstm_attention: 初始分类器召回率为0.47656746031746033 09/10/2022 18:00:00 [INFO] bilstm_attention: 初始分类器precision为0.4937136672850958 09/10/2022 18:00:00 [INFO] bilstm_attention: 初始分类器f1_score为0.4609404087975517 09/10/2022 18:04:40 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 18:04:47 [INFO] data_processor: 开始数据扩增 09/10/2022 18:05:36 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 18:05:38 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 18:05:38 [INFO] data_processor: 正在制作词表 09/10/2022 18:05:38 [INFO] data_processor: 正在获取词向量 09/10/2022 18:05:38 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 18:05:38 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 18:05:38 [INFO] bilstm_attention: 模型初始化 09/10/2022 18:05:38 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 18:09:45 [INFO] bilstm_attention: 初始分类器accuracy为0.494949494949495 09/10/2022 18:09:45 [INFO] bilstm_attention: 初始分类器召回率为0.45232142857142854 09/10/2022 18:09:45 [INFO] bilstm_attention: 初始分类器precision为0.45136621315192743 09/10/2022 18:09:45 [INFO] bilstm_attention: 初始分类器f1_score为0.4293037518037518 09/10/2022 18:10:25 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 18:10:27 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 18:10:27 [INFO] data_processor: 正在制作词表 09/10/2022 18:10:27 [INFO] data_processor: 正在获取词向量 09/10/2022 18:10:27 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 18:10:27 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 18:10:27 [INFO] bilstm_attention: 模型初始化 09/10/2022 18:10:27 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 18:19:32 [INFO] bilstm_attention: 初始分类器accuracy为0.5050505050505051 09/10/2022 18:19:32 [INFO] bilstm_attention: 初始分类器召回率为0.47970238095238094 09/10/2022 18:19:32 [INFO] bilstm_attention: 初始分类器precision为0.46514739229024943 09/10/2022 18:19:32 [INFO] bilstm_attention: 初始分类器f1_score为0.4458172184957899 09/10/2022 18:20:13 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 18:20:15 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 18:20:15 [INFO] data_processor: 正在制作词表 09/10/2022 18:20:15 [INFO] data_processor: 正在获取词向量 09/10/2022 18:20:15 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 18:20:15 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 18:20:15 [INFO] bilstm_attention: 模型初始化 09/10/2022 18:20:15 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 18:28:49 [INFO] bilstm_attention: 初始分类器accuracy为0.494949494949495 09/10/2022 18:28:49 [INFO] bilstm_attention: 初始分类器召回率为0.5582142857142858 09/10/2022 18:28:49 [INFO] bilstm_attention: 初始分类器precision为0.5345238095238095 09/10/2022 18:28:49 [INFO] bilstm_attention: 初始分类器f1_score为0.5243334707620422 09/10/2022 18:30:06 [INFO] data_processor: 开始数据扩增 09/10/2022 18:30:15 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 18:30:17 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 18:30:17 [INFO] data_processor: 正在制作词表 09/10/2022 18:30:17 [INFO] data_processor: 正在获取词向量 09/10/2022 18:30:17 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 18:30:17 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 18:30:17 [INFO] bilstm_attention: 模型初始化 09/10/2022 18:30:17 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 18:32:49 [INFO] bilstm_attention: 初始分类器accuracy为0.5151515151515151 09/10/2022 18:32:49 [INFO] bilstm_attention: 初始分类器召回率为0.45543650793650803 09/10/2022 18:32:49 [INFO] bilstm_attention: 初始分类器precision为0.4650340136054421 09/10/2022 18:32:49 [INFO] bilstm_attention: 初始分类器f1_score为0.44639705741209507 09/10/2022 18:33:47 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 18:33:49 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 18:33:49 [INFO] data_processor: 正在制作词表 09/10/2022 18:33:49 [INFO] data_processor: 正在获取词向量 09/10/2022 18:33:49 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 18:33:49 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 18:33:49 [INFO] bilstm_attention: 模型初始化 09/10/2022 18:33:49 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 18:36:22 [INFO] bilstm_attention: 初始分类器accuracy为0.5050505050505051 09/10/2022 18:36:22 [INFO] bilstm_attention: 初始分类器召回率为0.48287698412698415 09/10/2022 18:36:22 [INFO] bilstm_attention: 初始分类器precision为0.43900226757369615 09/10/2022 18:36:22 [INFO] bilstm_attention: 初始分类器f1_score为0.43182365914508775 09/10/2022 18:38:39 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 18:38:41 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 18:38:41 [INFO] data_processor: 正在制作词表 09/10/2022 18:38:41 [INFO] data_processor: 正在获取词向量 09/10/2022 18:38:41 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 18:38:41 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 18:38:41 [INFO] bilstm_attention: 模型初始化 09/10/2022 18:38:41 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 18:41:16 [INFO] bilstm_attention: 初始分类器accuracy为0.5555555555555556 09/10/2022 18:41:16 [INFO] bilstm_attention: 初始分类器召回率为0.48638888888888887 09/10/2022 18:41:16 [INFO] bilstm_attention: 初始分类器precision为0.49824263038548755 09/10/2022 18:41:16 [INFO] bilstm_attention: 初始分类器f1_score为0.4796094006244382 09/10/2022 18:48:51 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 18:48:53 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 18:48:53 [INFO] data_processor: 正在制作词表 09/10/2022 18:48:53 [INFO] data_processor: 正在获取词向量 09/10/2022 18:48:53 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 18:48:53 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 18:48:53 [INFO] bilstm_attention: 模型初始化 09/10/2022 18:48:53 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 18:49:23 [INFO] bilstm_attention: 初始分类器accuracy为0.5454545454545454 09/10/2022 18:49:23 [INFO] bilstm_attention: 初始分类器召回率为0.5424007936507936 09/10/2022 18:49:23 [INFO] bilstm_attention: 初始分类器precision为0.5102267573696145 09/10/2022 18:49:23 [INFO] bilstm_attention: 初始分类器f1_score为0.5012751402037116 09/10/2022 18:53:35 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 18:53:37 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 18:53:37 [INFO] data_processor: 正在制作词表 09/10/2022 18:53:37 [INFO] data_processor: 正在获取词向量 09/10/2022 18:53:37 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 18:53:37 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 18:53:37 [INFO] bilstm_attention: 模型初始化 09/10/2022 18:53:37 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 18:54:07 [INFO] bilstm_attention: 初始分类器accuracy为0.5454545454545454 09/10/2022 18:54:07 [INFO] bilstm_attention: 初始分类器召回率为0.5424007936507936 09/10/2022 18:54:07 [INFO] bilstm_attention: 初始分类器precision为0.5102267573696145 09/10/2022 18:54:07 [INFO] bilstm_attention: 初始分类器f1_score为0.5012751402037116 09/10/2022 18:58:17 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 18:58:19 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 18:58:19 [INFO] data_processor: 正在制作词表 09/10/2022 18:58:19 [INFO] data_processor: 正在获取词向量 09/10/2022 18:58:19 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 18:58:19 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 18:58:19 [INFO] bilstm_attention: 模型初始化 09/10/2022 18:58:19 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 18:58:50 [INFO] bilstm_attention: 初始分类器accuracy为0.5454545454545454 09/10/2022 18:58:50 [INFO] bilstm_attention: 初始分类器召回率为0.5424007936507936 09/10/2022 18:58:50 [INFO] bilstm_attention: 初始分类器precision为0.5102267573696145 09/10/2022 18:58:50 [INFO] bilstm_attention: 初始分类器f1_score为0.5012751402037116 09/10/2022 19:00:22 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 19:00:24 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 19:00:24 [INFO] data_processor: 正在制作词表 09/10/2022 19:00:24 [INFO] data_processor: 正在获取词向量 09/10/2022 19:00:24 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 19:00:24 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 19:00:24 [INFO] bilstm_attention: 模型初始化 09/10/2022 19:00:24 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 19:02:55 [INFO] bilstm_attention: 初始分类器accuracy为0.5555555555555556 09/10/2022 19:02:55 [INFO] bilstm_attention: 初始分类器召回率为0.48638888888888887 09/10/2022 19:02:55 [INFO] bilstm_attention: 初始分类器precision为0.49824263038548755 09/10/2022 19:02:55 [INFO] bilstm_attention: 初始分类器f1_score为0.4796094006244382 09/10/2022 19:14:05 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 19:14:07 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 19:14:07 [INFO] data_processor: 正在制作词表 09/10/2022 19:14:07 [INFO] data_processor: 正在获取词向量 09/10/2022 19:14:07 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 19:14:07 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 19:14:07 [INFO] bilstm_attention: 模型初始化 09/10/2022 19:14:07 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 19:15:42 [INFO] bilstm_attention: 初始分类器accuracy为0.5252525252525253 09/10/2022 19:15:42 [INFO] bilstm_attention: 初始分类器召回率为0.6449664918414919 09/10/2022 19:15:42 [INFO] bilstm_attention: 初始分类器precision为0.6428315897065897 09/10/2022 19:15:42 [INFO] bilstm_attention: 初始分类器f1_score为0.6295271857771858 09/10/2022 19:16:23 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 19:16:25 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 19:16:25 [INFO] data_processor: 正在制作词表 09/10/2022 19:16:25 [INFO] data_processor: 正在获取词向量 09/10/2022 19:16:25 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 19:16:25 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 19:16:25 [INFO] bilstm_attention: 模型初始化 09/10/2022 19:16:25 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 19:17:21 [INFO] bilstm_attention: 初始分类器accuracy为0.48484848484848486 09/10/2022 19:17:21 [INFO] bilstm_attention: 初始分类器召回率为0.5077177452177453 09/10/2022 19:17:21 [INFO] bilstm_attention: 初始分类器precision为0.505398316734101 09/10/2022 19:17:21 [INFO] bilstm_attention: 初始分类器f1_score为0.4969081711288438 09/10/2022 19:19:24 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 19:19:26 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 19:19:26 [INFO] data_processor: 正在制作词表 09/10/2022 19:19:26 [INFO] data_processor: 正在获取词向量 09/10/2022 19:19:26 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 19:19:26 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 19:19:26 [INFO] bilstm_attention: 模型初始化 09/10/2022 19:19:26 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 19:19:55 [INFO] bilstm_attention: 初始分类器accuracy为0.48484848484848486 09/10/2022 19:19:55 [INFO] bilstm_attention: 初始分类器召回率为0.4710515873015873 09/10/2022 19:19:55 [INFO] bilstm_attention: 初始分类器precision为0.47434240362811797 09/10/2022 19:19:55 [INFO] bilstm_attention: 初始分类器f1_score为0.452191082726797 09/10/2022 19:20:47 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 19:20:49 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 19:20:49 [INFO] data_processor: 正在制作词表 09/10/2022 19:20:49 [INFO] data_processor: 正在获取词向量 09/10/2022 19:20:49 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 19:20:49 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 19:20:49 [INFO] bilstm_attention: 模型初始化 09/10/2022 19:20:49 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 19:23:36 [INFO] bilstm_attention: 初始分类器accuracy为0.5555555555555556 09/10/2022 19:23:36 [INFO] bilstm_attention: 初始分类器召回率为0.48638888888888887 09/10/2022 19:23:36 [INFO] bilstm_attention: 初始分类器precision为0.49824263038548755 09/10/2022 19:23:36 [INFO] bilstm_attention: 初始分类器f1_score为0.4796094006244382 09/10/2022 19:38:29 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 19:38:31 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 19:38:31 [INFO] data_processor: 正在制作词表 09/10/2022 19:38:31 [INFO] data_processor: 正在获取词向量 09/10/2022 19:38:31 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 19:38:31 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 19:38:31 [INFO] bilstm_attention: 模型初始化 09/10/2022 19:38:31 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 19:40:59 [INFO] bilstm_attention: 初始分类器accuracy为0.5555555555555556 09/10/2022 19:40:59 [INFO] bilstm_attention: 初始分类器召回率为0.48638888888888887 09/10/2022 19:40:59 [INFO] bilstm_attention: 初始分类器precision为0.49824263038548755 09/10/2022 19:40:59 [INFO] bilstm_attention: 初始分类器f1_score为0.4796094006244382 09/10/2022 19:41:00 [INFO] bilstm_attention: 开始第1次重训练 09/10/2022 19:43:37 [INFO] bilstm_attention: 开始第2次重训练 09/10/2022 19:46:15 [INFO] bilstm_attention: 开始第3次重训练 09/10/2022 19:48:55 [INFO] bilstm_attention: 开始第4次重训练 09/10/2022 19:54:15 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.5757575757575758 09/10/2022 19:54:15 [INFO] bilstm_attention: 训练完成,测试集召回率为0.4614682539682539 09/10/2022 19:54:15 [INFO] bilstm_attention: 训练完成,测试集Precision为0.5492316017316018 09/10/2022 19:54:15 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.47722269793698363 09/10/2022 21:38:28 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 21:38:30 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 21:38:30 [INFO] data_processor: 正在制作词表 09/10/2022 21:38:30 [INFO] data_processor: 正在获取词向量 09/10/2022 21:38:30 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 21:38:30 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 21:38:30 [INFO] bilstm_attention: 模型初始化 09/10/2022 21:38:30 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 21:41:21 [INFO] bilstm_attention: 初始分类器accuracy为0.5555555555555556 09/10/2022 21:41:21 [INFO] bilstm_attention: 初始分类器召回率为0.48638888888888887 09/10/2022 21:41:21 [INFO] bilstm_attention: 初始分类器precision为0.49824263038548755 09/10/2022 21:41:21 [INFO] bilstm_attention: 初始分类器f1_score为0.4796094006244382 09/10/2022 21:48:38 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 21:48:39 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 21:48:39 [INFO] data_processor: 正在制作词表 09/10/2022 21:48:39 [INFO] data_processor: 正在获取词向量 09/10/2022 21:48:39 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 21:48:39 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 21:48:39 [INFO] bilstm_attention: 模型初始化 09/10/2022 21:48:39 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 21:49:09 [INFO] bilstm_attention: 初始分类器accuracy为0.48484848484848486 09/10/2022 21:49:09 [INFO] bilstm_attention: 初始分类器召回率为0.4710515873015873 09/10/2022 21:49:09 [INFO] bilstm_attention: 初始分类器precision为0.47434240362811797 09/10/2022 21:49:09 [INFO] bilstm_attention: 初始分类器f1_score为0.452191082726797 09/10/2022 21:55:24 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 21:55:26 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 21:55:26 [INFO] data_processor: 正在制作词表 09/10/2022 21:55:26 [INFO] data_processor: 正在获取词向量 09/10/2022 21:55:26 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 21:55:26 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 21:55:26 [INFO] bilstm_attention: 模型初始化 09/10/2022 21:55:26 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 21:55:58 [INFO] bilstm_attention: 初始分类器accuracy为0.47474747474747475 09/10/2022 21:55:58 [INFO] bilstm_attention: 初始分类器召回率为0.4393055555555555 09/10/2022 21:55:58 [INFO] bilstm_attention: 初始分类器precision为0.4307625112982256 09/10/2022 21:55:58 [INFO] bilstm_attention: 初始分类器f1_score为0.458469387755102 09/10/2022 21:58:12 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 21:58:14 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 21:58:14 [INFO] data_processor: 正在制作词表 09/10/2022 21:58:14 [INFO] data_processor: 正在获取词向量 09/10/2022 21:58:14 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 21:58:14 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 21:58:14 [INFO] bilstm_attention: 模型初始化 09/10/2022 21:58:14 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 21:58:45 [INFO] bilstm_attention: 初始分类器accuracy为0.494949494949495 09/10/2022 21:58:45 [INFO] bilstm_attention: 初始分类器召回率为0.5404960317460318 09/10/2022 21:58:45 [INFO] bilstm_attention: 初始分类器precision为0.5365982197074634 09/10/2022 21:58:45 [INFO] bilstm_attention: 初始分类器f1_score为0.5676672335600906 09/10/2022 22:05:50 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 22:05:52 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 22:05:52 [INFO] data_processor: 正在制作词表 09/10/2022 22:05:52 [INFO] data_processor: 正在获取词向量 09/10/2022 22:05:52 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 22:05:52 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 22:05:52 [INFO] bilstm_attention: 模型初始化 09/10/2022 22:05:52 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 22:06:24 [INFO] bilstm_attention: 初始分类器accuracy为0.494949494949495 09/10/2022 22:06:24 [INFO] bilstm_attention: 初始分类器召回率为0.5404960317460318 09/10/2022 22:06:24 [INFO] bilstm_attention: 初始分类器precision为0.5365982197074634 09/10/2022 22:06:24 [INFO] bilstm_attention: 初始分类器f1_score为0.5676672335600906 09/10/2022 22:08:30 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 22:08:32 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 22:08:32 [INFO] data_processor: 正在制作词表 09/10/2022 22:08:32 [INFO] data_processor: 正在获取词向量 09/10/2022 22:08:32 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 22:08:32 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 22:08:32 [INFO] bilstm_attention: 模型初始化 09/10/2022 22:08:32 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 22:09:06 [INFO] bilstm_attention: 初始分类器accuracy为0.494949494949495 09/10/2022 22:09:06 [INFO] bilstm_attention: 初始分类器召回率为0.5404960317460318 09/10/2022 22:09:06 [INFO] bilstm_attention: 初始分类器precision为0.5365982197074634 09/10/2022 22:09:06 [INFO] bilstm_attention: 初始分类器f1_score为0.5676672335600906 09/10/2022 22:14:43 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 22:14:45 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 22:14:45 [INFO] data_processor: 正在制作词表 09/10/2022 22:14:45 [INFO] data_processor: 正在获取词向量 09/10/2022 22:14:45 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 22:14:45 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 22:14:45 [INFO] bilstm_attention: 模型初始化 09/10/2022 22:14:45 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 22:15:17 [INFO] bilstm_attention: 初始分类器accuracy为0.494949494949495 09/10/2022 22:15:17 [INFO] bilstm_attention: 初始分类器召回率为0.5404960317460318 09/10/2022 22:15:17 [INFO] bilstm_attention: 初始分类器precision为0.5365982197074634 09/10/2022 22:15:17 [INFO] bilstm_attention: 初始分类器f1_score为0.5676672335600906 09/10/2022 22:21:21 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 22:21:24 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 22:21:24 [INFO] data_processor: 正在制作词表 09/10/2022 22:21:24 [INFO] data_processor: 正在获取词向量 09/10/2022 22:21:24 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 22:21:24 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 22:21:24 [INFO] bilstm_attention: 模型初始化 09/10/2022 22:21:24 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 22:27:40 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 22:27:42 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 22:27:42 [INFO] data_processor: 正在制作词表 09/10/2022 22:27:42 [INFO] data_processor: 正在获取词向量 09/10/2022 22:27:42 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 22:27:42 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 22:27:42 [INFO] bilstm_attention: 模型初始化 09/10/2022 22:27:42 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 22:28:13 [INFO] bilstm_attention: 初始分类器accuracy为0.494949494949495 09/10/2022 22:28:13 [INFO] bilstm_attention: 初始分类器召回率为0.5404960317460318 09/10/2022 22:28:13 [INFO] bilstm_attention: 初始分类器precision为0.5365982197074634 09/10/2022 22:28:13 [INFO] bilstm_attention: 初始分类器f1_score为0.5676672335600906 09/10/2022 22:29:08 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 22:29:10 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 22:29:10 [INFO] data_processor: 正在制作词表 09/10/2022 22:29:10 [INFO] data_processor: 正在获取词向量 09/10/2022 22:29:10 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 22:29:10 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 22:29:10 [INFO] bilstm_attention: 模型初始化 09/10/2022 22:29:10 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 22:29:17 [INFO] bilstm_attention: 初始分类器accuracy为0.48484848484848486 09/10/2022 22:29:17 [INFO] bilstm_attention: 初始分类器召回率为0.34003968253968253 09/10/2022 22:29:17 [INFO] bilstm_attention: 初始分类器precision为0.3227724423102574 09/10/2022 22:29:17 [INFO] bilstm_attention: 初始分类器f1_score为0.35833333333333334 09/10/2022 22:34:26 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 22:34:28 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 22:34:28 [INFO] data_processor: 正在制作词表 09/10/2022 22:34:28 [INFO] data_processor: 正在获取词向量 09/10/2022 22:34:28 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 22:34:28 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 22:34:28 [INFO] bilstm_attention: 模型初始化 09/10/2022 22:34:28 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 22:34:35 [INFO] bilstm_attention: 初始分类器accuracy为0.48484848484848486 09/10/2022 22:34:35 [INFO] bilstm_attention: 初始分类器召回率为0.34003968253968253 09/10/2022 22:34:35 [INFO] bilstm_attention: 初始分类器precision为0.3227724423102574 09/10/2022 22:34:35 [INFO] bilstm_attention: 初始分类器f1_score为0.35833333333333334 09/10/2022 22:42:38 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 22:42:40 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 22:42:40 [INFO] data_processor: 正在制作词表 09/10/2022 22:42:40 [INFO] data_processor: 正在获取词向量 09/10/2022 22:42:40 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 22:42:40 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 22:42:40 [INFO] bilstm_attention: 模型初始化 09/10/2022 22:42:40 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 22:45:29 [INFO] bilstm_attention: 初始分类器accuracy为0.5959595959595959 09/10/2022 22:45:29 [INFO] bilstm_attention: 初始分类器召回率为0.5093055555555556 09/10/2022 22:45:29 [INFO] bilstm_attention: 初始分类器precision为0.5056717290645862 09/10/2022 22:45:29 [INFO] bilstm_attention: 初始分类器f1_score为0.5344812925170068 09/10/2022 22:59:41 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 22:59:43 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 22:59:43 [INFO] data_processor: 正在制作词表 09/10/2022 22:59:43 [INFO] data_processor: 正在获取词向量 09/10/2022 22:59:43 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 22:59:43 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 22:59:43 [INFO] bilstm_attention: 模型初始化 09/10/2022 22:59:43 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 23:02:29 [INFO] bilstm_attention: 初始分类器accuracy为0.5959595959595959 09/10/2022 23:02:29 [INFO] bilstm_attention: 初始分类器召回率为0.5093055555555556 09/10/2022 23:02:29 [INFO] bilstm_attention: 初始分类器precision为0.5056717290645862 09/10/2022 23:02:29 [INFO] bilstm_attention: 初始分类器f1_score为0.5344812925170068 09/10/2022 23:02:29 [INFO] bilstm_attention: 开始第1次重训练 09/10/2022 23:05:28 [INFO] bilstm_attention: 开始第2次重训练 09/10/2022 23:08:22 [INFO] bilstm_attention: 开始第3次重训练 09/10/2022 23:14:31 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.47474747474747475 09/10/2022 23:14:31 [INFO] bilstm_attention: 训练完成,测试集召回率为0.4209722222222222 09/10/2022 23:14:31 [INFO] bilstm_attention: 训练完成,测试集Precision为0.4400085034013605 09/10/2022 23:14:31 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.4084550836651677 09/10/2022 23:19:47 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 23:19:49 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 23:19:49 [INFO] data_processor: 正在制作词表 09/10/2022 23:19:49 [INFO] data_processor: 正在获取词向量 09/10/2022 23:19:49 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 23:19:49 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 23:19:49 [INFO] bilstm_attention: 模型初始化 09/10/2022 23:19:49 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 23:20:08 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 23:20:10 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 23:20:10 [INFO] data_processor: 正在制作词表 09/10/2022 23:20:10 [INFO] data_processor: 正在获取词向量 09/10/2022 23:20:10 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 23:20:10 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 23:20:10 [INFO] bilstm_attention: 模型初始化 09/10/2022 23:20:10 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 23:23:10 [INFO] bilstm_attention: 初始分类器accuracy为0.5959595959595959 09/10/2022 23:23:10 [INFO] bilstm_attention: 初始分类器召回率为0.5093055555555556 09/10/2022 23:23:10 [INFO] bilstm_attention: 初始分类器precision为0.5056717290645862 09/10/2022 23:23:10 [INFO] bilstm_attention: 初始分类器f1_score为0.5344812925170068 09/10/2022 23:25:35 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 23:25:37 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 23:25:37 [INFO] data_processor: 正在制作词表 09/10/2022 23:25:37 [INFO] data_processor: 正在获取词向量 09/10/2022 23:25:37 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 23:25:37 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 23:25:37 [INFO] bilstm_attention: 模型初始化 09/10/2022 23:25:37 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 23:28:37 [INFO] bilstm_attention: 初始分类器accuracy为0.5959595959595959 09/10/2022 23:28:37 [INFO] bilstm_attention: 初始分类器召回率为0.5093055555555556 09/10/2022 23:28:37 [INFO] bilstm_attention: 初始分类器precision为0.5056717290645862 09/10/2022 23:28:37 [INFO] bilstm_attention: 初始分类器f1_score为0.5344812925170068 09/10/2022 23:41:22 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/10/2022 23:41:24 [INFO] data_processor: 正在从数据库读取原始数据 09/10/2022 23:41:24 [INFO] data_processor: 正在制作词表 09/10/2022 23:41:24 [INFO] data_processor: 正在获取词向量 09/10/2022 23:41:24 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/10/2022 23:41:24 [INFO] bilstm_attention: pytorch 初始化 09/10/2022 23:41:24 [INFO] bilstm_attention: 模型初始化 09/10/2022 23:41:24 [INFO] bilstm_attention: 开始训练基础分类器 09/10/2022 23:43:57 [INFO] bilstm_attention: 初始分类器accuracy为0.5959595959595959 09/10/2022 23:43:57 [INFO] bilstm_attention: 初始分类器召回率为0.5093055555555556 09/10/2022 23:43:57 [INFO] bilstm_attention: 初始分类器precision为0.5056717290645862 09/10/2022 23:43:57 [INFO] bilstm_attention: 初始分类器f1_score为0.5344812925170068 09/10/2022 23:43:57 [INFO] bilstm_attention: 开始第1次重训练 09/10/2022 23:46:38 [INFO] bilstm_attention: 开始第2次重训练 09/10/2022 23:49:29 [INFO] bilstm_attention: 开始第3次重训练 09/10/2022 23:56:33 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.5353535353535354 09/10/2022 23:56:33 [INFO] bilstm_attention: 训练完成,测试集召回率为0.47388888888888886 09/10/2022 23:56:33 [INFO] bilstm_attention: 训练完成,测试集Precision为0.45751314162028445 09/10/2022 23:56:33 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.49808390022675736 09/11/2022 00:12:21 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/11/2022 00:12:23 [INFO] data_processor: 正在从数据库读取原始数据 09/11/2022 00:12:23 [INFO] data_processor: 正在制作词表 09/11/2022 00:12:23 [INFO] data_processor: 正在获取词向量 09/11/2022 00:12:23 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/11/2022 00:12:23 [INFO] bilstm_attention: pytorch 初始化 09/11/2022 00:12:23 [INFO] bilstm_attention: 模型初始化 09/11/2022 00:12:23 [INFO] bilstm_attention: 开始训练基础分类器 09/11/2022 00:15:12 [INFO] bilstm_attention: 初始分类器accuracy为0.5555555555555556 09/11/2022 00:15:12 [INFO] bilstm_attention: 初始分类器召回率为0.48638888888888887 09/11/2022 00:15:12 [INFO] bilstm_attention: 初始分类器precision为0.49824263038548755 09/11/2022 00:15:12 [INFO] bilstm_attention: 初始分类器f1_score为0.4796094006244382 09/11/2022 00:15:12 [INFO] bilstm_attention: 开始第1次重训练 09/11/2022 00:18:05 [INFO] bilstm_attention: 开始第2次重训练 09/11/2022 00:21:14 [INFO] bilstm_attention: 开始第3次重训练 09/11/2022 00:24:27 [INFO] bilstm_attention: 开始第4次重训练 09/11/2022 10:30:16 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/11/2022 10:30:18 [INFO] data_processor: 正在从数据库读取原始数据 09/11/2022 10:30:18 [INFO] data_processor: 正在制作词表 09/11/2022 10:30:18 [INFO] data_processor: 正在获取词向量 09/11/2022 10:30:18 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/11/2022 10:30:18 [INFO] bilstm_attention: pytorch 初始化 09/11/2022 10:30:18 [INFO] bilstm_attention: 模型初始化 09/11/2022 10:30:18 [INFO] bilstm_attention: 开始训练基础分类器 09/11/2022 10:32:50 [INFO] bilstm_attention: 初始分类器accuracy为0.5555555555555556 09/11/2022 10:32:50 [INFO] bilstm_attention: 初始分类器召回率为0.48638888888888887 09/11/2022 10:32:50 [INFO] bilstm_attention: 初始分类器precision为0.49824263038548755 09/11/2022 10:32:50 [INFO] bilstm_attention: 初始分类器f1_score为0.4796094006244382 09/11/2022 10:32:51 [INFO] bilstm_attention: 开始第1次重训练 09/11/2022 10:35:44 [INFO] bilstm_attention: 开始第2次重训练 09/11/2022 10:38:21 [INFO] bilstm_attention: 开始第3次重训练 09/11/2022 10:41:22 [INFO] bilstm_attention: 开始第4次重训练 09/11/2022 10:46:50 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.5757575757575758 09/11/2022 10:46:50 [INFO] bilstm_attention: 训练完成,测试集召回率为0.4614682539682539 09/11/2022 10:46:50 [INFO] bilstm_attention: 训练完成,测试集Precision为0.5492316017316018 09/11/2022 10:46:50 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.47722269793698363 09/11/2022 11:34:46 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/11/2022 11:34:48 [INFO] data_processor: 正在从数据库读取原始数据 09/11/2022 11:34:48 [INFO] data_processor: 正在制作词表 09/11/2022 11:34:48 [INFO] data_processor: 正在获取词向量 09/11/2022 11:34:48 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/11/2022 11:34:48 [INFO] bilstm_attention: pytorch 初始化 09/11/2022 11:34:48 [INFO] bilstm_attention: 模型初始化 09/11/2022 11:34:48 [INFO] bilstm_attention: 开始训练基础分类器 09/11/2022 11:35:16 [INFO] bilstm_attention: 初始分类器accuracy为0.48484848484848486 09/11/2022 11:35:16 [INFO] bilstm_attention: 初始分类器召回率为0.4710515873015873 09/11/2022 11:35:16 [INFO] bilstm_attention: 初始分类器precision为0.47434240362811797 09/11/2022 11:35:16 [INFO] bilstm_attention: 初始分类器f1_score为0.452191082726797 09/11/2022 11:35:17 [INFO] bilstm_attention: 开始第1次重训练 09/11/2022 11:35:48 [INFO] bilstm_attention: 开始第2次重训练 09/11/2022 11:36:23 [INFO] bilstm_attention: 开始第3次重训练 09/11/2022 11:36:59 [INFO] bilstm_attention: 开始第4次重训练 09/11/2022 11:37:35 [INFO] bilstm_attention: 开始第5次重训练 09/11/2022 11:38:47 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.5151515151515151 09/11/2022 11:38:47 [INFO] bilstm_attention: 训练完成,测试集召回率为0.3670833333333333 09/11/2022 11:38:47 [INFO] bilstm_attention: 训练完成,测试集Precision为0.43898590166447315 09/11/2022 11:38:47 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.3678161176751403 09/11/2022 13:49:42 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/11/2022 13:49:44 [INFO] data_processor: 正在从数据库读取原始数据 09/11/2022 13:54:55 [INFO] data_processor: 正在制作词表 09/11/2022 13:54:55 [INFO] data_processor: 正在获取词向量 09/11/2022 13:54:55 [INFO] bilstm_attention: 开始训练模型:航天中认自主可控众包测试练习赛 09/11/2022 13:54:55 [INFO] bilstm_attention: pytorch 初始化 09/11/2022 13:54:55 [INFO] bilstm_attention: 模型初始化 09/11/2022 13:54:55 [INFO] bilstm_attention: 开始训练基础分类器 09/11/2022 13:55:27 [INFO] bilstm_attention: 初始分类器accuracy为0.5 09/11/2022 13:55:27 [INFO] bilstm_attention: 初始分类器召回率为0.28275462962962966 09/11/2022 13:55:27 [INFO] bilstm_attention: 初始分类器precision为0.27398504273504276 09/11/2022 13:55:27 [INFO] bilstm_attention: 初始分类器f1_score为0.23451667569230503 09/11/2022 13:55:27 [INFO] bilstm_attention: 开始第1次重训练 09/11/2022 13:56:02 [INFO] bilstm_attention: 开始第2次重训练 09/11/2022 13:56:39 [INFO] bilstm_attention: 开始第3次重训练 09/11/2022 13:57:13 [INFO] bilstm_attention: 开始第4次重训练 09/11/2022 13:57:46 [INFO] bilstm_attention: 开始第5次重训练 09/11/2022 13:58:20 [INFO] bilstm_attention: 开始第6次重训练 09/11/2022 13:59:30 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.5106382978723404 09/11/2022 13:59:30 [INFO] bilstm_attention: 训练完成,测试集召回率为0.29882605820105823 09/11/2022 13:59:30 [INFO] bilstm_attention: 训练完成,测试集Precision为0.3177849927849928 09/11/2022 13:59:30 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.25302449965493445 09/11/2022 14:04:21 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/11/2022 14:04:23 [INFO] data_processor: 正在从数据库读取原始数据 09/11/2022 14:09:41 [INFO] data_processor: 正在制作词表 09/11/2022 14:09:42 [INFO] data_processor: 正在获取词向量 09/11/2022 14:09:42 [INFO] bilstm_attention: 开始训练模型:航天中认自主可控众包测试练习赛 09/11/2022 14:09:42 [INFO] bilstm_attention: pytorch 初始化 09/11/2022 14:09:42 [INFO] bilstm_attention: 模型初始化 09/11/2022 14:09:42 [INFO] bilstm_attention: 开始训练基础分类器 09/11/2022 14:14:04 [INFO] bilstm_attention: 初始分类器accuracy为0.43617021276595747 09/11/2022 14:14:04 [INFO] bilstm_attention: 初始分类器召回率为0.18935185185185185 09/11/2022 14:14:04 [INFO] bilstm_attention: 初始分类器precision为0.09910256410256409 09/11/2022 14:14:04 [INFO] bilstm_attention: 初始分类器f1_score为0.12894786373047243 09/11/2022 14:14:05 [INFO] bilstm_attention: 开始第1次重训练 09/11/2022 14:18:30 [INFO] bilstm_attention: 开始第2次重训练 09/11/2022 14:23:17 [INFO] bilstm_attention: 开始第3次重训练 09/11/2022 14:27:46 [INFO] bilstm_attention: 开始第4次重训练 09/11/2022 14:33:09 [INFO] bilstm_attention: 开始第5次重训练 09/11/2022 14:37:42 [INFO] bilstm_attention: 开始第6次重训练 09/11/2022 14:42:09 [INFO] bilstm_attention: 开始第7次重训练 09/11/2022 14:46:33 [INFO] bilstm_attention: 开始第8次重训练 09/11/2022 14:50:58 [INFO] bilstm_attention: 开始第9次重训练 09/11/2022 14:59:49 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.46808510638297873 09/11/2022 14:59:49 [INFO] bilstm_attention: 训练完成,测试集召回率为0.22870370370370366 09/11/2022 14:59:49 [INFO] bilstm_attention: 训练完成,测试集Precision为0.11255952380952382 09/11/2022 14:59:49 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.14944005270092225 09/11/2022 15:02:51 [INFO] data_processor: 开始数据扩增 09/11/2022 15:03:16 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/11/2022 15:03:18 [INFO] data_processor: 正在从数据库读取原始数据 09/11/2022 15:06:09 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/11/2022 15:06:11 [INFO] data_processor: 正在从数据库读取原始数据 09/11/2022 15:06:11 [INFO] data_processor: 正在制作词表 09/11/2022 15:06:11 [INFO] data_processor: 正在获取词向量 09/11/2022 15:06:11 [INFO] bilstm_attention: 开始训练模型:航天中认自主可控众包测试练习赛 09/11/2022 15:06:11 [INFO] bilstm_attention: pytorch 初始化 09/11/2022 15:06:11 [INFO] bilstm_attention: 模型初始化 09/11/2022 15:06:11 [INFO] bilstm_attention: 开始训练基础分类器 09/11/2022 15:07:42 [INFO] bilstm_attention: 初始分类器accuracy为0.574468085106383 09/11/2022 15:07:42 [INFO] bilstm_attention: 初始分类器召回率为0.4131613756613757 09/11/2022 15:07:42 [INFO] bilstm_attention: 初始分类器precision为0.47333333333333333 09/11/2022 15:07:42 [INFO] bilstm_attention: 初始分类器f1_score为0.4266110033757093 09/11/2022 15:07:42 [INFO] bilstm_attention: 开始第1次重训练 09/11/2022 15:09:33 [INFO] bilstm_attention: 开始第2次重训练 09/11/2022 15:11:31 [INFO] bilstm_attention: 开始第3次重训练 09/11/2022 15:13:30 [INFO] bilstm_attention: 开始第4次重训练 09/11/2022 15:15:20 [INFO] bilstm_attention: 开始第5次重训练 09/11/2022 15:17:04 [INFO] bilstm_attention: 开始第6次重训练 09/11/2022 15:20:31 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.5638297872340425 09/11/2022 15:20:31 [INFO] bilstm_attention: 训练完成,测试集召回率为0.3781084656084656 09/11/2022 15:20:31 [INFO] bilstm_attention: 训练完成,测试集Precision为0.37813552188552185 09/11/2022 15:20:31 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.36179963798384845 09/11/2022 15:24:42 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/11/2022 15:24:44 [INFO] data_processor: 正在从数据库读取原始数据 09/11/2022 15:24:44 [INFO] data_processor: 正在制作词表 09/11/2022 15:24:44 [INFO] data_processor: 正在获取词向量 09/11/2022 15:24:44 [INFO] bilstm_attention: 开始训练模型:航天中认自主可控众包测试练习赛 09/11/2022 15:24:44 [INFO] bilstm_attention: pytorch 初始化 09/11/2022 15:24:44 [INFO] bilstm_attention: 模型初始化 09/11/2022 15:24:44 [INFO] bilstm_attention: 开始训练基础分类器 09/11/2022 15:26:14 [INFO] bilstm_attention: 初始分类器accuracy为0.574468085106383 09/11/2022 15:26:14 [INFO] bilstm_attention: 初始分类器召回率为0.4131613756613757 09/11/2022 15:26:14 [INFO] bilstm_attention: 初始分类器precision为0.47333333333333333 09/11/2022 15:26:14 [INFO] bilstm_attention: 初始分类器f1_score为0.4266110033757093 09/11/2022 15:26:14 [INFO] bilstm_attention: 开始第1次重训练 09/11/2022 15:27:49 [INFO] bilstm_attention: 开始第2次重训练 09/11/2022 15:29:27 [INFO] bilstm_attention: 开始第3次重训练 09/11/2022 15:31:07 [INFO] bilstm_attention: 开始第4次重训练 09/11/2022 15:32:47 [INFO] bilstm_attention: 开始第5次重训练 09/11/2022 15:34:26 [INFO] bilstm_attention: 开始第6次重训练 09/11/2022 15:37:44 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.5531914893617021 09/11/2022 15:37:44 [INFO] bilstm_attention: 训练完成,测试集召回率为0.3702215608465609 09/11/2022 15:37:44 [INFO] bilstm_attention: 训练完成,测试集Precision为0.37565536315536313 09/11/2022 15:37:44 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.35115081590734437 09/11/2022 15:55:13 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/11/2022 15:55:15 [INFO] data_processor: 正在从数据库读取原始数据 09/11/2022 15:55:15 [INFO] data_processor: 正在制作词表 09/11/2022 15:55:15 [INFO] data_processor: 正在获取词向量 09/11/2022 15:55:15 [INFO] bilstm_attention: 开始训练模型:航天中认自主可控众包测试练习赛 09/11/2022 15:55:15 [INFO] bilstm_attention: pytorch 初始化 09/11/2022 15:55:15 [INFO] bilstm_attention: 模型初始化 09/11/2022 15:55:15 [INFO] bilstm_attention: 开始训练基础分类器 09/11/2022 15:56:44 [INFO] bilstm_attention: 初始分类器accuracy为0.574468085106383 09/11/2022 15:56:44 [INFO] bilstm_attention: 初始分类器召回率为0.39507275132275127 09/11/2022 15:56:44 [INFO] bilstm_attention: 初始分类器precision为0.43928451178451183 09/11/2022 15:56:44 [INFO] bilstm_attention: 初始分类器f1_score为0.40309392132921545 09/11/2022 15:56:45 [INFO] bilstm_attention: 开始第1次重训练 09/11/2022 15:58:20 [INFO] bilstm_attention: 开始第2次重训练 09/11/2022 15:59:56 [INFO] bilstm_attention: 开始第3次重训练 09/11/2022 16:01:34 [INFO] bilstm_attention: 开始第4次重训练 09/11/2022 16:03:12 [INFO] bilstm_attention: 开始第5次重训练 09/11/2022 16:05:04 [INFO] bilstm_attention: 开始第6次重训练 09/11/2022 16:07:15 [INFO] bilstm_attention: 开始第7次重训练 09/11/2022 16:11:11 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.5212765957446809 09/11/2022 16:11:11 [INFO] bilstm_attention: 训练完成,测试集召回率为0.3332175925925926 09/11/2022 16:11:11 [INFO] bilstm_attention: 训练完成,测试集Precision为0.3919400044400045 09/11/2022 16:11:11 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.32224012005005404 09/11/2022 16:14:20 [INFO] data_processor: 开始数据扩增 09/11/2022 16:14:26 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/11/2022 16:14:28 [INFO] data_processor: 正在从数据库读取原始数据 09/11/2022 16:14:28 [INFO] data_processor: 正在制作词表 09/11/2022 16:14:28 [INFO] data_processor: 正在获取词向量 09/11/2022 16:14:28 [INFO] bilstm_attention: 开始训练模型:航天中认自主可控众包测试练习赛 09/11/2022 16:14:28 [INFO] bilstm_attention: pytorch 初始化 09/11/2022 16:14:28 [INFO] bilstm_attention: 模型初始化 09/11/2022 16:14:28 [INFO] bilstm_attention: 开始训练基础分类器 09/11/2022 16:18:37 [INFO] bilstm_attention: 初始分类器accuracy为0.5851063829787234 09/11/2022 16:18:37 [INFO] bilstm_attention: 初始分类器召回率为0.39292328042328045 09/11/2022 16:18:37 [INFO] bilstm_attention: 初始分类器precision为0.4285085978835979 09/11/2022 16:18:37 [INFO] bilstm_attention: 初始分类器f1_score为0.3917638742406544 09/11/2022 16:18:37 [INFO] bilstm_attention: 开始第1次重训练 09/11/2022 16:23:07 [INFO] bilstm_attention: 开始第2次重训练 09/11/2022 16:28:10 [INFO] bilstm_attention: 开始第3次重训练 09/11/2022 16:33:40 [INFO] bilstm_attention: 开始第4次重训练 09/11/2022 16:38:54 [INFO] bilstm_attention: 开始第5次重训练 09/11/2022 16:49:05 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.30851063829787234 09/11/2022 16:49:05 [INFO] bilstm_attention: 训练完成,测试集召回率为0.29837962962962966 09/11/2022 16:49:05 [INFO] bilstm_attention: 训练完成,测试集Precision为0.294268648018648 09/11/2022 16:49:05 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.22444777444777445 09/11/2022 16:50:28 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/11/2022 16:50:30 [INFO] data_processor: 正在从数据库读取原始数据 09/11/2022 16:50:30 [INFO] data_processor: 正在制作词表 09/11/2022 16:50:30 [INFO] data_processor: 正在获取词向量 09/11/2022 16:50:30 [INFO] bilstm_attention: 开始训练模型:航天中认自主可控众包测试练习赛 09/11/2022 16:50:30 [INFO] bilstm_attention: pytorch 初始化 09/11/2022 16:50:30 [INFO] bilstm_attention: 模型初始化 09/11/2022 16:50:30 [INFO] bilstm_attention: 开始训练基础分类器 09/11/2022 16:55:19 [INFO] bilstm_attention: 初始分类器accuracy为0.5638297872340425 09/11/2022 16:55:19 [INFO] bilstm_attention: 初始分类器召回率为0.41845238095238096 09/11/2022 16:55:19 [INFO] bilstm_attention: 初始分类器precision为0.4497123015873017 09/11/2022 16:55:19 [INFO] bilstm_attention: 初始分类器f1_score为0.42004222901281724 09/11/2022 16:55:19 [INFO] bilstm_attention: 开始第1次重训练 09/11/2022 17:00:27 [INFO] bilstm_attention: 开始第2次重训练 09/11/2022 17:05:23 [INFO] bilstm_attention: 开始第3次重训练 09/11/2022 17:10:28 [INFO] bilstm_attention: 开始第4次重训练 09/11/2022 17:15:26 [INFO] bilstm_attention: 开始第5次重训练 09/11/2022 17:20:20 [INFO] bilstm_attention: 开始第6次重训练 09/11/2022 17:29:39 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.5638297872340425 09/11/2022 17:29:39 [INFO] bilstm_attention: 训练完成,测试集召回率为0.42089947089947094 09/11/2022 17:29:39 [INFO] bilstm_attention: 训练完成,测试集Precision为0.45398478835978845 09/11/2022 17:29:39 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.42097650171179585 09/12/2022 09:57:50 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/12/2022 09:57:53 [INFO] data_processor: 正在从数据库读取原始数据 09/12/2022 09:57:53 [INFO] data_processor: 正在制作词表 09/12/2022 09:57:53 [INFO] data_processor: 正在获取词向量 09/12/2022 09:57:53 [INFO] bilstm_attention: 开始训练模型:航天中认自主可控众包测试练习赛 09/12/2022 09:57:53 [INFO] bilstm_attention: pytorch 初始化 09/12/2022 09:57:53 [INFO] bilstm_attention: 模型初始化 09/12/2022 09:57:53 [INFO] bilstm_attention: 开始训练基础分类器 09/12/2022 10:02:37 [INFO] bilstm_attention: 初始分类器accuracy为0.5531914893617021 09/12/2022 10:02:37 [INFO] bilstm_attention: 初始分类器召回率为0.44510582010582006 09/12/2022 10:02:37 [INFO] bilstm_attention: 初始分类器precision为0.43978174603174597 09/12/2022 10:02:37 [INFO] bilstm_attention: 初始分类器f1_score为0.4219074226427167 09/12/2022 10:02:37 [INFO] bilstm_attention: 开始第1次重训练 09/12/2022 10:07:18 [INFO] bilstm_attention: 开始第2次重训练 09/12/2022 10:12:03 [INFO] bilstm_attention: 开始第3次重训练 09/12/2022 10:16:56 [INFO] bilstm_attention: 开始第4次重训练 09/12/2022 10:21:40 [INFO] bilstm_attention: 开始第5次重训练 09/12/2022 10:26:18 [INFO] bilstm_attention: 开始第6次重训练 09/12/2022 10:30:55 [INFO] bilstm_attention: 开始第7次重训练 09/12/2022 10:40:31 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.5638297872340425 09/12/2022 10:40:31 [INFO] bilstm_attention: 训练完成,测试集召回率为0.4534391534391535 09/12/2022 10:40:31 [INFO] bilstm_attention: 训练完成,测试集Precision为0.44379960317460315 09/12/2022 10:40:31 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.42847030420559823 09/12/2022 10:42:41 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/12/2022 10:42:44 [INFO] data_processor: 正在从数据库读取原始数据 09/12/2022 10:42:44 [INFO] data_processor: 正在制作词表 09/12/2022 10:42:44 [INFO] data_processor: 正在获取词向量 09/12/2022 10:42:44 [INFO] bilstm_attention: 开始训练模型:航天中认自主可控众包测试练习赛 09/12/2022 10:42:44 [INFO] bilstm_attention: pytorch 初始化 09/12/2022 10:42:44 [INFO] bilstm_attention: 模型初始化 09/12/2022 10:42:44 [INFO] bilstm_attention: 开始训练基础分类器 09/12/2022 10:43:48 [INFO] bilstm_attention: 初始分类器accuracy为0.5212765957446809 09/12/2022 10:43:48 [INFO] bilstm_attention: 初始分类器召回率为0.4113756613756614 09/12/2022 10:43:48 [INFO] bilstm_attention: 初始分类器precision为0.44662698412698415 09/12/2022 10:43:48 [INFO] bilstm_attention: 初始分类器f1_score为0.3977718360071301 09/12/2022 10:54:07 [INFO] bilstm_attention: 开始第1次重训练 09/12/2022 10:54:59 [INFO] bilstm_attention: 开始第2次重训练 09/12/2022 10:55:57 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/12/2022 10:56:00 [INFO] data_processor: 正在从数据库读取原始数据 09/12/2022 10:56:00 [INFO] data_processor: 正在制作词表 09/12/2022 10:56:00 [INFO] data_processor: 正在获取词向量 09/12/2022 10:56:00 [INFO] bilstm_attention: 开始训练模型:航天中认自主可控众包测试练习赛 09/12/2022 10:56:00 [INFO] bilstm_attention: pytorch 初始化 09/12/2022 10:56:00 [INFO] bilstm_attention: 模型初始化 09/12/2022 10:56:00 [INFO] bilstm_attention: 开始训练基础分类器 09/12/2022 10:56:53 [INFO] bilstm_attention: 初始分类器accuracy为0.5212765957446809 09/12/2022 10:56:53 [INFO] bilstm_attention: 初始分类器召回率为0.4113756613756614 09/12/2022 10:56:53 [INFO] bilstm_attention: 初始分类器precision为0.44662698412698415 09/12/2022 10:56:53 [INFO] bilstm_attention: 初始分类器f1_score为0.3977718360071301 09/12/2022 11:00:13 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/12/2022 11:00:16 [INFO] data_processor: 正在从数据库读取原始数据 09/12/2022 11:00:16 [INFO] data_processor: 正在制作词表 09/12/2022 11:00:16 [INFO] data_processor: 正在获取词向量 09/12/2022 11:00:16 [INFO] bilstm_attention: 开始训练模型:航天中认自主可控众包测试练习赛 09/12/2022 11:00:16 [INFO] bilstm_attention: pytorch 初始化 09/12/2022 11:00:16 [INFO] bilstm_attention: 模型初始化 09/12/2022 11:00:16 [INFO] bilstm_attention: 开始训练基础分类器 09/12/2022 11:01:08 [INFO] bilstm_attention: 初始分类器accuracy为0.5212765957446809 09/12/2022 11:01:08 [INFO] bilstm_attention: 初始分类器召回率为0.4113756613756614 09/12/2022 11:01:08 [INFO] bilstm_attention: 初始分类器precision为0.44662698412698415 09/12/2022 11:01:08 [INFO] bilstm_attention: 初始分类器f1_score为0.3977718360071301 09/12/2022 11:06:49 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/12/2022 11:06:51 [INFO] data_processor: 正在从数据库读取原始数据 09/12/2022 11:06:51 [INFO] data_processor: 正在制作词表 09/12/2022 11:06:51 [INFO] data_processor: 正在获取词向量 09/12/2022 11:06:51 [INFO] bilstm_attention: 开始训练模型:航天中认自主可控众包测试练习赛 09/12/2022 11:06:51 [INFO] bilstm_attention: pytorch 初始化 09/12/2022 11:06:51 [INFO] bilstm_attention: 模型初始化 09/12/2022 11:06:51 [INFO] bilstm_attention: 开始训练基础分类器 09/12/2022 11:07:49 [INFO] bilstm_attention: 初始分类器accuracy为0.5212765957446809 09/12/2022 11:07:49 [INFO] bilstm_attention: 初始分类器召回率为0.4113756613756614 09/12/2022 11:07:49 [INFO] bilstm_attention: 初始分类器precision为0.44662698412698415 09/12/2022 11:07:49 [INFO] bilstm_attention: 初始分类器f1_score为0.3977718360071301 09/12/2022 11:07:49 [INFO] bilstm_attention: 开始第1次重训练 09/12/2022 11:08:44 [INFO] bilstm_attention: 开始第2次重训练 09/12/2022 11:09:36 [INFO] bilstm_attention: 开始第3次重训练 09/12/2022 11:10:28 [INFO] bilstm_attention: 开始第4次重训练 09/12/2022 11:11:21 [INFO] bilstm_attention: 开始第5次重训练 09/12/2022 11:12:20 [INFO] bilstm_attention: 开始第6次重训练 09/12/2022 12:30:06 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/12/2022 12:30:09 [INFO] data_processor: 正在从数据库读取原始数据 09/12/2022 12:30:09 [INFO] data_processor: 正在制作词表 09/12/2022 12:30:09 [INFO] data_processor: 正在获取词向量 09/12/2022 12:30:09 [INFO] bilstm_attention: 开始训练模型:航天中认自主可控众包测试练习赛 09/12/2022 12:30:09 [INFO] bilstm_attention: pytorch 初始化 09/12/2022 12:30:09 [INFO] bilstm_attention: 模型初始化 09/12/2022 12:30:09 [INFO] bilstm_attention: 开始训练基础分类器 09/12/2022 12:31:03 [INFO] bilstm_attention: 初始分类器accuracy为0.5212765957446809 09/12/2022 12:31:03 [INFO] bilstm_attention: 初始分类器召回率为0.4113756613756614 09/12/2022 12:31:03 [INFO] bilstm_attention: 初始分类器precision为0.44662698412698415 09/12/2022 12:31:03 [INFO] bilstm_attention: 初始分类器f1_score为0.3977718360071301 09/12/2022 12:32:14 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/12/2022 12:32:16 [INFO] data_processor: 正在从数据库读取原始数据 09/12/2022 12:32:16 [INFO] data_processor: 正在制作词表 09/12/2022 12:32:16 [INFO] data_processor: 正在获取词向量 09/12/2022 12:32:16 [INFO] bilstm_attention: 开始训练模型:航天中认自主可控众包测试练习赛 09/12/2022 12:32:16 [INFO] bilstm_attention: pytorch 初始化 09/12/2022 12:32:16 [INFO] bilstm_attention: 模型初始化 09/12/2022 12:32:16 [INFO] bilstm_attention: 开始训练基础分类器 09/12/2022 12:33:04 [INFO] bilstm_attention: 初始分类器accuracy为0.5212765957446809 09/12/2022 12:33:04 [INFO] bilstm_attention: 初始分类器召回率为0.4113756613756614 09/12/2022 12:33:04 [INFO] bilstm_attention: 初始分类器precision为0.44662698412698415 09/12/2022 12:33:04 [INFO] bilstm_attention: 初始分类器f1_score为0.3977718360071301 09/12/2022 12:36:40 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/12/2022 12:41:46 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/12/2022 12:41:47 [INFO] data_processor: 正在从数据库读取原始数据 09/12/2022 12:41:47 [INFO] data_processor: 正在制作词表 09/12/2022 12:41:47 [INFO] data_processor: 正在获取词向量 09/12/2022 12:41:47 [INFO] bilstm_attention: 开始训练模型:航天中认自主可控众包测试练习赛 09/12/2022 12:41:47 [INFO] bilstm_attention: pytorch 初始化 09/12/2022 12:41:47 [INFO] bilstm_attention: 模型初始化 09/12/2022 12:41:47 [INFO] bilstm_attention: 开始训练基础分类器 09/12/2022 12:42:37 [INFO] bilstm_attention: 初始分类器accuracy为0.5212765957446809 09/12/2022 12:42:37 [INFO] bilstm_attention: 初始分类器召回率为0.4113756613756614 09/12/2022 12:42:37 [INFO] bilstm_attention: 初始分类器precision为0.44662698412698415 09/12/2022 12:42:37 [INFO] bilstm_attention: 初始分类器f1_score为0.3977718360071301 09/12/2022 12:42:37 [INFO] bilstm_attention: 开始第1次重训练 09/12/2022 12:43:28 [INFO] bilstm_attention: 开始第2次重训练 09/12/2022 12:44:18 [INFO] bilstm_attention: 开始第3次重训练 09/12/2022 12:45:09 [INFO] bilstm_attention: 开始第4次重训练 09/12/2022 12:45:59 [INFO] bilstm_attention: 开始第5次重训练 09/12/2022 12:46:49 [INFO] bilstm_attention: 开始第6次重训练 09/12/2022 12:47:39 [INFO] bilstm_attention: 开始第7次重训练 09/12/2022 12:49:21 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.5319148936170213 09/12/2022 12:49:21 [INFO] bilstm_attention: 训练完成,测试集召回率为0.44636243386243385 09/12/2022 12:49:21 [INFO] bilstm_attention: 训练完成,测试集Precision为0.496521164021164 09/12/2022 12:49:21 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.4469454156954156 09/12/2022 12:52:16 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/12/2022 12:52:18 [INFO] data_processor: 正在从数据库读取原始数据 09/12/2022 12:52:18 [INFO] data_processor: 正在制作词表 09/12/2022 12:52:18 [INFO] data_processor: 正在获取词向量 09/12/2022 12:52:18 [INFO] bilstm_attention: 开始训练模型:航天中认自主可控众包测试练习赛 09/12/2022 12:52:18 [INFO] bilstm_attention: pytorch 初始化 09/12/2022 12:52:18 [INFO] bilstm_attention: 模型初始化 09/12/2022 12:52:18 [INFO] bilstm_attention: 开始训练基础分类器 09/12/2022 12:56:17 [INFO] bilstm_attention: 初始分类器accuracy为0.5531914893617021 09/12/2022 12:56:17 [INFO] bilstm_attention: 初始分类器召回率为0.44510582010582006 09/12/2022 12:56:17 [INFO] bilstm_attention: 初始分类器precision为0.43978174603174597 09/12/2022 12:56:17 [INFO] bilstm_attention: 初始分类器f1_score为0.4219074226427167 09/12/2022 12:56:17 [INFO] bilstm_attention: 开始第1次重训练 09/12/2022 13:00:50 [INFO] bilstm_attention: 开始第2次重训练 09/12/2022 13:05:39 [INFO] bilstm_attention: 开始第3次重训练 09/12/2022 13:10:27 [INFO] bilstm_attention: 开始第4次重训练 09/12/2022 13:15:17 [INFO] bilstm_attention: 开始第5次重训练 09/12/2022 13:20:10 [INFO] bilstm_attention: 开始第6次重训练 09/12/2022 13:24:44 [INFO] bilstm_attention: 开始第7次重训练 09/12/2022 13:33:10 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.5638297872340425 09/12/2022 13:33:10 [INFO] bilstm_attention: 训练完成,测试集召回率为0.4534391534391535 09/12/2022 13:33:10 [INFO] bilstm_attention: 训练完成,测试集Precision为0.44379960317460315 09/12/2022 13:33:10 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.42847030420559823 09/12/2022 13:42:21 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/12/2022 13:42:23 [INFO] data_processor: 正在从数据库读取原始数据 09/12/2022 13:42:23 [INFO] data_processor: 正在制作词表 09/12/2022 13:42:23 [INFO] data_processor: 正在获取词向量 09/12/2022 13:42:23 [INFO] bilstm_attention: 开始训练模型:航天中认自主可控众包测试练习赛 09/12/2022 13:42:23 [INFO] bilstm_attention: pytorch 初始化 09/12/2022 13:42:23 [INFO] bilstm_attention: 模型初始化 09/12/2022 13:42:23 [INFO] bilstm_attention: 开始训练基础分类器 09/12/2022 13:42:49 [INFO] bilstm_attention: 初始分类器accuracy为0.5106382978723404 09/12/2022 13:42:49 [INFO] bilstm_attention: 初始分类器召回率为0.2708333333333333 09/12/2022 13:42:49 [INFO] bilstm_attention: 初始分类器precision为0.21847718253968254 09/12/2022 13:42:49 [INFO] bilstm_attention: 初始分类器f1_score为0.2054499473320984 09/12/2022 13:42:49 [INFO] bilstm_attention: 开始第1次重训练 09/12/2022 13:43:19 [INFO] bilstm_attention: 开始第2次重训练 09/12/2022 13:43:51 [INFO] bilstm_attention: 开始第3次重训练 09/12/2022 13:44:25 [INFO] bilstm_attention: 开始第4次重训练 09/12/2022 13:44:58 [INFO] bilstm_attention: 开始第5次重训练 09/12/2022 13:45:32 [INFO] bilstm_attention: 开始第6次重训练 09/12/2022 13:46:07 [INFO] bilstm_attention: 开始第7次重训练 09/12/2022 13:46:42 [INFO] bilstm_attention: 开始第8次重训练 09/12/2022 13:47:16 [INFO] bilstm_attention: 开始第9次重训练 09/12/2022 13:47:51 [INFO] bilstm_attention: 开始第10次重训练 09/12/2022 13:48:26 [INFO] bilstm_attention: 开始第11次重训练 09/12/2022 13:49:38 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.5106382978723404 09/12/2022 13:49:38 [INFO] bilstm_attention: 训练完成,测试集召回率为0.2864583333333333 09/12/2022 13:49:38 [INFO] bilstm_attention: 训练完成,测试集Precision为0.2588888888888889 09/12/2022 13:49:38 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.23097530965093896 09/12/2022 14:07:26 [INFO] data_processor: 开始数据扩增 09/12/2022 14:08:19 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/12/2022 14:08:21 [INFO] data_processor: 正在从数据库读取原始数据 09/12/2022 14:08:21 [INFO] data_processor: 正在制作词表 09/12/2022 14:08:21 [INFO] data_processor: 正在获取词向量 09/12/2022 14:08:21 [INFO] bilstm_attention: 开始训练模型:决赛自主可控众测web自主可控运维管理系统 09/12/2022 14:08:21 [INFO] bilstm_attention: pytorch 初始化 09/12/2022 14:08:21 [INFO] bilstm_attention: 模型初始化 09/12/2022 14:08:21 [INFO] bilstm_attention: 开始训练基础分类器 09/12/2022 14:08:59 [INFO] bilstm_attention: 初始分类器accuracy为0.5488721804511278 09/12/2022 14:08:59 [INFO] bilstm_attention: 初始分类器召回率为0.3022836833947945 09/12/2022 14:08:59 [INFO] bilstm_attention: 初始分类器precision为0.24504066920733583 09/12/2022 14:08:59 [INFO] bilstm_attention: 初始分类器f1_score为0.240602725522634 09/12/2022 14:08:59 [INFO] bilstm_attention: 开始第1次重训练 09/12/2022 14:09:43 [INFO] bilstm_attention: 开始第2次重训练 09/12/2022 14:10:28 [INFO] bilstm_attention: 开始第3次重训练 09/12/2022 14:11:14 [INFO] bilstm_attention: 开始第4次重训练 09/12/2022 14:12:01 [INFO] bilstm_attention: 开始第5次重训练 09/12/2022 14:12:50 [INFO] bilstm_attention: 开始第6次重训练 09/12/2022 14:13:38 [INFO] bilstm_attention: 开始第7次重训练 09/12/2022 14:14:28 [INFO] bilstm_attention: 开始第8次重训练 09/12/2022 14:16:09 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.5639097744360902 09/12/2022 14:16:09 [INFO] bilstm_attention: 训练完成,测试集召回率为0.39109641387419164 09/12/2022 14:16:09 [INFO] bilstm_attention: 训练完成,测试集Precision为0.32613842947176275 09/12/2022 14:16:09 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.32398261366097625 09/12/2022 14:24:59 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/12/2022 14:25:01 [INFO] data_processor: 正在从数据库读取原始数据 09/12/2022 14:25:01 [INFO] data_processor: 正在制作词表 09/12/2022 14:25:01 [INFO] data_processor: 正在获取词向量 09/12/2022 14:25:01 [INFO] bilstm_attention: 开始训练模型:决赛自主可控众测web自主可控运维管理系统 09/12/2022 14:25:01 [INFO] bilstm_attention: pytorch 初始化 09/12/2022 14:25:01 [INFO] bilstm_attention: 模型初始化 09/12/2022 14:25:01 [INFO] bilstm_attention: 开始训练基础分类器 09/12/2022 14:29:06 [INFO] bilstm_attention: 初始分类器accuracy为0.5263157894736842 09/12/2022 14:29:06 [INFO] bilstm_attention: 初始分类器召回率为0.24444444444444446 09/12/2022 14:29:06 [INFO] bilstm_attention: 初始分类器precision为0.14970568783068783 09/12/2022 14:29:06 [INFO] bilstm_attention: 初始分类器f1_score为0.18182060088492835 09/12/2022 14:29:06 [INFO] bilstm_attention: 开始第1次重训练 09/12/2022 14:33:17 [INFO] bilstm_attention: 开始第2次重训练 09/12/2022 14:37:32 [INFO] bilstm_attention: 开始第3次重训练 09/12/2022 14:41:49 [INFO] bilstm_attention: 开始第4次重训练 09/12/2022 14:46:09 [INFO] bilstm_attention: 开始第5次重训练 09/12/2022 14:50:27 [INFO] bilstm_attention: 开始第6次重训练 09/12/2022 14:54:45 [INFO] bilstm_attention: 开始第7次重训练 09/12/2022 14:59:02 [INFO] bilstm_attention: 开始第8次重训练 09/12/2022 15:03:20 [INFO] bilstm_attention: 开始第9次重训练 09/12/2022 15:13:05 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.5639097744360902 09/12/2022 15:13:05 [INFO] bilstm_attention: 训练完成,测试集召回率为0.3211934156378601 09/12/2022 15:13:05 [INFO] bilstm_attention: 训练完成,测试集Precision为0.2129884004884005 09/12/2022 15:13:05 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.2477131716020605 09/12/2022 15:48:57 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/12/2022 15:48:59 [INFO] data_processor: 正在从数据库读取原始数据 09/12/2022 15:48:59 [INFO] data_processor: 正在制作词表 09/12/2022 15:48:59 [INFO] data_processor: 正在获取词向量 09/12/2022 15:48:59 [INFO] bilstm_attention: 开始训练模型:决赛自主可控众测web自主可控运维管理系统 09/12/2022 15:48:59 [INFO] bilstm_attention: pytorch 初始化 09/12/2022 15:48:59 [INFO] bilstm_attention: 模型初始化 09/12/2022 15:48:59 [INFO] bilstm_attention: 开始训练基础分类器 09/12/2022 15:53:36 [INFO] bilstm_attention: 初始分类器accuracy为0.5263157894736842 09/12/2022 15:53:36 [INFO] bilstm_attention: 初始分类器召回率为0.24444444444444446 09/12/2022 15:53:36 [INFO] bilstm_attention: 初始分类器precision为0.14970568783068783 09/12/2022 15:53:36 [INFO] bilstm_attention: 初始分类器f1_score为0.18182060088492835 09/12/2022 15:53:36 [INFO] bilstm_attention: 开始第1次重训练 09/12/2022 15:58:41 [INFO] bilstm_attention: 开始第2次重训练 09/12/2022 16:03:50 [INFO] bilstm_attention: 开始第3次重训练 09/12/2022 16:08:59 [INFO] bilstm_attention: 开始第4次重训练 09/12/2022 16:14:09 [INFO] bilstm_attention: 开始第5次重训练 09/12/2022 16:19:18 [INFO] bilstm_attention: 开始第6次重训练 09/12/2022 16:24:27 [INFO] bilstm_attention: 开始第7次重训练 09/12/2022 16:34:46 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.5338345864661654 09/12/2022 16:34:46 [INFO] bilstm_attention: 训练完成,测试集召回率为0.2518518518518518 09/12/2022 16:34:46 [INFO] bilstm_attention: 训练完成,测试集Precision为0.1318287037037037 09/12/2022 16:34:46 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.1707946338864213 09/12/2022 20:19:41 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/12/2022 20:19:43 [INFO] data_processor: 正在从数据库读取原始数据 09/12/2022 20:19:43 [INFO] data_processor: 正在制作词表 09/12/2022 20:19:43 [INFO] data_processor: 正在获取词向量 09/12/2022 20:19:43 [INFO] bilstm_attention: 开始训练模型:决赛自主可控众测web自主可控运维管理系统 09/12/2022 20:19:43 [INFO] bilstm_attention: pytorch 初始化 09/12/2022 20:19:43 [INFO] bilstm_attention: 模型初始化 09/12/2022 20:19:43 [INFO] bilstm_attention: 开始训练基础分类器 09/12/2022 20:23:44 [INFO] bilstm_attention: 初始分类器accuracy为0.518796992481203 09/12/2022 20:23:44 [INFO] bilstm_attention: 初始分类器召回率为0.36266955266955264 09/12/2022 20:23:44 [INFO] bilstm_attention: 初始分类器precision为0.33722222222222226 09/12/2022 20:23:44 [INFO] bilstm_attention: 初始分类器f1_score为0.3216637244191424 09/12/2022 20:23:44 [INFO] bilstm_attention: 开始第1次重训练 09/12/2022 20:27:52 [INFO] bilstm_attention: 开始第2次重训练 09/12/2022 20:32:05 [INFO] bilstm_attention: 开始第3次重训练 09/12/2022 20:36:19 [INFO] bilstm_attention: 开始第4次重训练 09/12/2022 20:40:37 [INFO] bilstm_attention: 开始第5次重训练 09/12/2022 20:50:16 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.3609022556390977 09/12/2022 20:50:16 [INFO] bilstm_attention: 训练完成,测试集召回率为0.3144158516380738 09/12/2022 20:50:16 [INFO] bilstm_attention: 训练完成,测试集Precision为0.26138608305274974 09/12/2022 20:50:16 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.21540724707391373 09/12/2022 20:52:04 [INFO] data_processor: 开始数据扩增 09/12/2022 20:52:54 [INFO] data_processor: 开始数据扩增 09/12/2022 20:53:17 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/12/2022 20:53:19 [INFO] data_processor: 正在从数据库读取原始数据 09/12/2022 20:53:19 [INFO] data_processor: 正在制作词表 09/12/2022 20:53:19 [INFO] data_processor: 正在获取词向量 09/12/2022 20:53:19 [INFO] bilstm_attention: 开始训练模型:决赛自主可控众测web自主可控运维管理系统 09/12/2022 20:53:19 [INFO] bilstm_attention: pytorch 初始化 09/12/2022 20:53:19 [INFO] bilstm_attention: 模型初始化 09/12/2022 20:53:19 [INFO] bilstm_attention: 开始训练基础分类器 09/12/2022 20:55:14 [INFO] bilstm_attention: 初始分类器accuracy为0.5112781954887218 09/12/2022 20:55:14 [INFO] bilstm_attention: 初始分类器召回率为0.21234567901234566 09/12/2022 20:55:14 [INFO] bilstm_attention: 初始分类器precision为0.11676638176638177 09/12/2022 20:55:14 [INFO] bilstm_attention: 初始分类器f1_score为0.1481678737399561 09/12/2022 20:55:14 [INFO] bilstm_attention: 开始第1次重训练 09/12/2022 20:57:18 [INFO] bilstm_attention: 开始第2次重训练 09/12/2022 20:59:25 [INFO] bilstm_attention: 开始第3次重训练 09/12/2022 21:01:33 [INFO] bilstm_attention: 开始第4次重训练 09/12/2022 21:03:41 [INFO] bilstm_attention: 开始第5次重训练 09/12/2022 21:05:50 [INFO] bilstm_attention: 开始第6次重训练 09/12/2022 21:07:59 [INFO] bilstm_attention: 开始第7次重训练 09/12/2022 21:10:08 [INFO] bilstm_attention: 开始第8次重训练 09/12/2022 21:12:16 [INFO] bilstm_attention: 开始第9次重训练 09/12/2022 21:16:36 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.5338345864661654 09/12/2022 21:16:36 [INFO] bilstm_attention: 训练完成,测试集召回率为0.2518518518518518 09/12/2022 21:16:36 [INFO] bilstm_attention: 训练完成,测试集Precision为0.1318287037037037 09/12/2022 21:16:36 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.1707946338864213 09/12/2022 22:10:40 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/12/2022 22:10:43 [INFO] data_processor: 正在从数据库读取原始数据 09/12/2022 22:10:43 [INFO] data_processor: 正在制作词表 09/12/2022 22:10:43 [INFO] data_processor: 正在获取词向量 09/12/2022 22:10:43 [INFO] bilstm_attention: 开始训练模型:决赛自主可控众测web自主可控运维管理系统 09/12/2022 22:10:43 [INFO] bilstm_attention: pytorch 初始化 09/12/2022 22:10:43 [INFO] bilstm_attention: 模型初始化 09/12/2022 22:10:43 [INFO] bilstm_attention: 开始训练基础分类器 09/12/2022 22:11:07 [INFO] bilstm_attention: 初始分类器accuracy为0.5112781954887218 09/12/2022 22:11:07 [INFO] bilstm_attention: 初始分类器召回率为0.21234567901234566 09/12/2022 22:11:07 [INFO] bilstm_attention: 初始分类器precision为0.11676638176638177 09/12/2022 22:11:07 [INFO] bilstm_attention: 初始分类器f1_score为0.1481678737399561 09/12/2022 23:04:46 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/12/2022 23:04:48 [INFO] data_processor: 正在从数据库读取原始数据 09/12/2022 23:04:48 [INFO] data_processor: 正在制作词表 09/12/2022 23:04:48 [INFO] data_processor: 正在获取词向量 09/12/2022 23:04:48 [INFO] bilstm_attention: 开始训练模型:决赛自主可控众测web自主可控运维管理系统 09/12/2022 23:04:48 [INFO] bilstm_attention: pytorch 初始化 09/12/2022 23:04:48 [INFO] bilstm_attention: 模型初始化 09/12/2022 23:04:48 [INFO] bilstm_attention: 开始训练基础分类器 09/12/2022 23:05:11 [INFO] bilstm_attention: 初始分类器accuracy为0.5112781954887218 09/12/2022 23:05:11 [INFO] bilstm_attention: 初始分类器召回率为0.21234567901234566 09/12/2022 23:05:11 [INFO] bilstm_attention: 初始分类器precision为0.11676638176638177 09/12/2022 23:05:11 [INFO] bilstm_attention: 初始分类器f1_score为0.1481678737399561 09/12/2022 23:05:11 [INFO] bilstm_attention: 开始第1次重训练 09/12/2022 23:05:36 [INFO] bilstm_attention: 开始第2次重训练 09/12/2022 23:06:01 [INFO] bilstm_attention: 开始第3次重训练 09/12/2022 23:06:26 [INFO] bilstm_attention: 开始第4次重训练 09/12/2022 23:06:52 [INFO] bilstm_attention: 开始第5次重训练 09/12/2022 23:07:18 [INFO] bilstm_attention: 开始第6次重训练 09/12/2022 23:07:43 [INFO] bilstm_attention: 开始第7次重训练 09/12/2022 23:08:09 [INFO] bilstm_attention: 开始第8次重训练 09/12/2022 23:08:35 [INFO] bilstm_attention: 开始第9次重训练 09/12/2022 23:09:00 [INFO] bilstm_attention: 开始第10次重训练 09/12/2022 23:09:53 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.5263157894736842 09/12/2022 23:09:53 [INFO] bilstm_attention: 训练完成,测试集召回率为0.21816578483245147 09/12/2022 23:09:53 [INFO] bilstm_attention: 训练完成,测试集Precision为0.14797949735449736 09/12/2022 23:09:53 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.15824565827426237 09/12/2022 23:14:26 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/12/2022 23:14:28 [INFO] data_processor: 正在从数据库读取原始数据 09/12/2022 23:14:28 [INFO] data_processor: 正在制作词表 09/12/2022 23:14:28 [INFO] data_processor: 正在获取词向量 09/12/2022 23:14:28 [INFO] bilstm_attention: 开始训练模型:决赛自主可控众测web自主可控运维管理系统 09/12/2022 23:14:28 [INFO] bilstm_attention: pytorch 初始化 09/12/2022 23:14:28 [INFO] bilstm_attention: 模型初始化 09/12/2022 23:14:28 [INFO] bilstm_attention: 开始训练基础分类器 09/12/2022 23:14:35 [INFO] bilstm_attention: 初始分类器accuracy为0.5338345864661654 09/12/2022 23:14:35 [INFO] bilstm_attention: 初始分类器召回率为0.2518518518518518 09/12/2022 23:14:35 [INFO] bilstm_attention: 初始分类器precision为0.1318287037037037 09/12/2022 23:14:35 [INFO] bilstm_attention: 初始分类器f1_score为0.1707946338864213 09/12/2022 23:14:35 [INFO] bilstm_attention: 开始第1次重训练 09/12/2022 23:14:43 [INFO] bilstm_attention: 开始第2次重训练 09/12/2022 23:14:52 [INFO] bilstm_attention: 开始第3次重训练 09/12/2022 23:15:01 [INFO] bilstm_attention: 开始第4次重训练 09/12/2022 23:15:09 [INFO] bilstm_attention: 开始第5次重训练 09/12/2022 23:15:18 [INFO] bilstm_attention: 开始第6次重训练 09/12/2022 23:15:28 [INFO] bilstm_attention: 开始第7次重训练 09/12/2022 23:15:37 [INFO] bilstm_attention: 开始第8次重训练 09/12/2022 23:15:58 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.5338345864661654 09/12/2022 23:15:58 [INFO] bilstm_attention: 训练完成,测试集召回率为0.2518518518518518 09/12/2022 23:15:58 [INFO] bilstm_attention: 训练完成,测试集Precision为0.1318287037037037 09/12/2022 23:15:58 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.1707946338864213 09/12/2022 23:17:23 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/12/2022 23:17:24 [INFO] data_processor: 正在从数据库读取原始数据 09/12/2022 23:17:24 [INFO] data_processor: 正在制作词表 09/12/2022 23:17:24 [INFO] data_processor: 正在获取词向量 09/12/2022 23:17:24 [INFO] bilstm_attention: 开始训练模型:决赛自主可控众测web自主可控运维管理系统 09/12/2022 23:17:24 [INFO] bilstm_attention: pytorch 初始化 09/12/2022 23:17:24 [INFO] bilstm_attention: 模型初始化 09/12/2022 23:17:24 [INFO] bilstm_attention: 开始训练基础分类器 09/12/2022 23:17:38 [INFO] bilstm_attention: 初始分类器accuracy为0.5639097744360902 09/12/2022 23:17:38 [INFO] bilstm_attention: 初始分类器召回率为0.32580220191331294 09/12/2022 23:17:38 [INFO] bilstm_attention: 初始分类器precision为0.25184506851173516 09/12/2022 23:17:38 [INFO] bilstm_attention: 初始分类器f1_score为0.25813371813371816 09/12/2022 23:17:39 [INFO] bilstm_attention: 开始第1次重训练 09/12/2022 23:17:55 [INFO] bilstm_attention: 开始第2次重训练 09/12/2022 23:18:11 [INFO] bilstm_attention: 开始第3次重训练 09/12/2022 23:18:29 [INFO] bilstm_attention: 开始第4次重训练 09/12/2022 23:18:47 [INFO] bilstm_attention: 开始第5次重训练 09/12/2022 23:19:05 [INFO] bilstm_attention: 开始第6次重训练 09/12/2022 23:19:24 [INFO] bilstm_attention: 开始第7次重训练 09/12/2022 23:19:42 [INFO] bilstm_attention: 开始第8次重训练 09/12/2022 23:20:01 [INFO] bilstm_attention: 开始第9次重训练 09/12/2022 23:20:20 [INFO] bilstm_attention: 开始第10次重训练 09/12/2022 23:20:38 [INFO] bilstm_attention: 开始第11次重训练 09/12/2022 23:20:57 [INFO] bilstm_attention: 开始第12次重训练 09/12/2022 23:21:37 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.5789473684210527 09/12/2022 23:21:37 [INFO] bilstm_attention: 训练完成,测试集召回率为0.3327892683448239 09/12/2022 23:21:37 [INFO] bilstm_attention: 训练完成,测试集Precision为0.2651811151811152 09/12/2022 23:21:37 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.26688860314535223 09/12/2022 23:22:29 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/12/2022 23:22:30 [INFO] data_processor: 正在从数据库读取原始数据 09/12/2022 23:22:30 [INFO] data_processor: 正在制作词表 09/12/2022 23:22:30 [INFO] data_processor: 正在获取词向量 09/12/2022 23:22:30 [INFO] bilstm_attention: 开始训练模型:决赛自主可控众测web自主可控运维管理系统 09/12/2022 23:22:30 [INFO] bilstm_attention: pytorch 初始化 09/12/2022 23:22:30 [INFO] bilstm_attention: 模型初始化 09/12/2022 23:22:30 [INFO] bilstm_attention: 开始训练基础分类器 09/12/2022 23:23:06 [INFO] bilstm_attention: 初始分类器accuracy为0.556390977443609 09/12/2022 23:23:06 [INFO] bilstm_attention: 初始分类器召回率为0.31191331302442404 09/12/2022 23:23:06 [INFO] bilstm_attention: 初始分类器precision为0.2464574006240673 09/12/2022 23:23:06 [INFO] bilstm_attention: 初始分类器f1_score为0.2506416128155259 09/12/2022 23:23:06 [INFO] bilstm_attention: 开始第1次重训练 09/12/2022 23:23:48 [INFO] bilstm_attention: 开始第2次重训练 09/12/2022 23:24:30 [INFO] bilstm_attention: 开始第3次重训练 09/12/2022 23:25:14 [INFO] bilstm_attention: 开始第4次重训练 09/12/2022 23:25:59 [INFO] bilstm_attention: 开始第5次重训练 09/12/2022 23:26:44 [INFO] bilstm_attention: 开始第6次重训练 09/12/2022 23:27:30 [INFO] bilstm_attention: 开始第7次重训练 09/12/2022 23:28:17 [INFO] bilstm_attention: 开始第8次重训练 09/12/2022 23:29:05 [INFO] bilstm_attention: 开始第9次重训练 09/12/2022 23:29:54 [INFO] bilstm_attention: 开始第10次重训练 09/12/2022 23:31:33 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.5639097744360902 09/12/2022 23:31:33 [INFO] bilstm_attention: 训练完成,测试集召回率为0.29868900646678426 09/12/2022 23:31:33 [INFO] bilstm_attention: 训练完成,测试集Precision为0.24661536765703435 09/12/2022 23:31:33 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.2409997940114899 09/12/2022 23:33:41 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/12/2022 23:33:42 [INFO] data_processor: 正在从数据库读取原始数据 09/12/2022 23:33:42 [INFO] data_processor: 正在制作词表 09/12/2022 23:33:42 [INFO] data_processor: 正在获取词向量 09/12/2022 23:33:42 [INFO] bilstm_attention: 开始训练模型:决赛自主可控众测web自主可控运维管理系统 09/12/2022 23:33:42 [INFO] bilstm_attention: pytorch 初始化 09/12/2022 23:33:43 [INFO] bilstm_attention: 模型初始化 09/12/2022 23:33:43 [INFO] bilstm_attention: 开始训练基础分类器 09/12/2022 23:35:39 [INFO] bilstm_attention: 初始分类器accuracy为0.5112781954887218 09/12/2022 23:35:39 [INFO] bilstm_attention: 初始分类器召回率为0.21234567901234566 09/12/2022 23:35:39 [INFO] bilstm_attention: 初始分类器precision为0.11676638176638177 09/12/2022 23:35:39 [INFO] bilstm_attention: 初始分类器f1_score为0.1481678737399561 09/12/2022 23:35:40 [INFO] bilstm_attention: 开始第1次重训练 09/12/2022 23:37:43 [INFO] bilstm_attention: 开始第2次重训练 09/12/2022 23:39:46 [INFO] bilstm_attention: 开始第3次重训练 09/12/2022 23:41:53 [INFO] bilstm_attention: 开始第4次重训练 09/12/2022 23:44:00 [INFO] bilstm_attention: 开始第5次重训练 09/12/2022 23:46:09 [INFO] bilstm_attention: 开始第6次重训练 09/12/2022 23:48:18 [INFO] bilstm_attention: 开始第7次重训练 09/12/2022 23:50:27 [INFO] bilstm_attention: 开始第8次重训练 09/12/2022 23:52:40 [INFO] bilstm_attention: 开始第9次重训练 09/12/2022 23:54:49 [INFO] bilstm_attention: 开始第10次重训练 09/12/2022 23:56:58 [INFO] bilstm_attention: 开始第11次重训练 09/12/2022 23:59:09 [INFO] bilstm_attention: 开始第12次重训练 09/13/2022 00:01:20 [INFO] bilstm_attention: 开始第13次重训练 09/13/2022 00:05:40 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.5413533834586466 09/13/2022 00:05:40 [INFO] bilstm_attention: 训练完成,测试集召回率为0.3121981721981722 09/13/2022 00:05:40 [INFO] bilstm_attention: 训练完成,测试集Precision为0.2665954415954416 09/13/2022 00:05:40 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.25784898452772853 09/13/2022 00:15:13 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/13/2022 00:15:15 [INFO] data_processor: 正在从数据库读取原始数据 09/13/2022 00:15:15 [INFO] data_processor: 正在制作词表 09/13/2022 00:15:15 [INFO] data_processor: 正在获取词向量 09/13/2022 00:15:15 [INFO] bilstm_attention: 开始训练模型:决赛自主可控众测web自主可控运维管理系统 09/13/2022 00:15:15 [INFO] bilstm_attention: pytorch 初始化 09/13/2022 00:15:15 [INFO] bilstm_attention: 模型初始化 09/13/2022 00:15:15 [INFO] bilstm_attention: 开始训练基础分类器 09/13/2022 00:15:50 [INFO] bilstm_attention: 初始分类器accuracy为0.5714285714285714 09/13/2022 00:15:50 [INFO] bilstm_attention: 初始分类器召回率为0.3055555555555556 09/13/2022 00:15:50 [INFO] bilstm_attention: 初始分类器precision为0.1896990740740741 09/13/2022 00:15:50 [INFO] bilstm_attention: 初始分类器f1_score为0.23144123366345593 09/13/2022 00:15:50 [INFO] bilstm_attention: 开始第1次重训练 09/13/2022 00:16:28 [INFO] bilstm_attention: 开始第2次重训练 09/13/2022 00:17:11 [INFO] bilstm_attention: 开始第3次重训练 09/13/2022 00:17:56 [INFO] bilstm_attention: 开始第4次重训练 09/13/2022 00:18:42 [INFO] bilstm_attention: 开始第5次重训练 09/13/2022 00:19:29 [INFO] bilstm_attention: 开始第6次重训练 09/13/2022 00:20:16 [INFO] bilstm_attention: 开始第7次重训练 09/13/2022 00:21:55 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.5714285714285714 09/13/2022 00:21:55 [INFO] bilstm_attention: 训练完成,测试集召回率为0.3055555555555556 09/13/2022 00:21:55 [INFO] bilstm_attention: 训练完成,测试集Precision为0.1896990740740741 09/13/2022 00:21:55 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.23144123366345593 09/13/2022 00:25:47 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/13/2022 00:25:48 [INFO] data_processor: 正在从数据库读取原始数据 09/13/2022 00:25:48 [INFO] data_processor: 正在制作词表 09/13/2022 00:25:48 [INFO] data_processor: 正在获取词向量 09/13/2022 00:25:48 [INFO] bilstm_attention: 开始训练模型:决赛自主可控众测web自主可控运维管理系统 09/13/2022 00:25:48 [INFO] bilstm_attention: pytorch 初始化 09/13/2022 00:25:48 [INFO] bilstm_attention: 模型初始化 09/13/2022 00:25:48 [INFO] bilstm_attention: 开始训练基础分类器 09/13/2022 00:27:44 [INFO] bilstm_attention: 初始分类器accuracy为0.7518796992481203 09/13/2022 00:27:44 [INFO] bilstm_attention: 初始分类器召回率为0.6173003179947626 09/13/2022 00:27:44 [INFO] bilstm_attention: 初始分类器precision为0.6229347041847042 09/13/2022 00:27:44 [INFO] bilstm_attention: 初始分类器f1_score为0.5941863782550058 09/13/2022 00:27:44 [INFO] bilstm_attention: 开始第1次重训练 09/13/2022 00:29:49 [INFO] bilstm_attention: 开始第2次重训练 09/13/2022 00:31:58 [INFO] bilstm_attention: 开始第3次重训练 09/13/2022 00:34:07 [INFO] bilstm_attention: 开始第4次重训练 09/13/2022 00:36:16 [INFO] bilstm_attention: 开始第5次重训练 09/13/2022 00:38:25 [INFO] bilstm_attention: 开始第6次重训练 09/13/2022 00:42:47 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.7368421052631579 09/13/2022 00:42:47 [INFO] bilstm_attention: 训练完成,测试集召回率为0.6080410587355032 09/13/2022 00:42:47 [INFO] bilstm_attention: 训练完成,测试集Precision为0.6124742798353909 09/13/2022 00:42:47 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.5842085014642634 09/13/2022 00:50:01 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/13/2022 00:50:02 [INFO] data_processor: 正在从数据库读取原始数据 09/13/2022 00:50:02 [INFO] data_processor: 正在制作词表 09/13/2022 00:50:02 [INFO] data_processor: 正在获取词向量 09/13/2022 00:50:02 [INFO] bilstm_attention: 开始训练模型:决赛自主可控众测web自主可控运维管理系统 09/13/2022 00:50:02 [INFO] bilstm_attention: pytorch 初始化 09/13/2022 00:50:02 [INFO] bilstm_attention: 模型初始化 09/13/2022 00:50:02 [INFO] bilstm_attention: 开始训练基础分类器 09/13/2022 00:53:28 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/13/2022 00:53:29 [INFO] data_processor: 正在从数据库读取原始数据 09/13/2022 00:53:29 [INFO] data_processor: 正在制作词表 09/13/2022 00:53:30 [INFO] data_processor: 正在获取词向量 09/13/2022 00:53:30 [INFO] bilstm_attention: 开始训练模型:决赛自主可控众测web自主可控运维管理系统 09/13/2022 00:53:30 [INFO] bilstm_attention: pytorch 初始化 09/13/2022 00:53:30 [INFO] bilstm_attention: 模型初始化 09/13/2022 00:53:30 [INFO] bilstm_attention: 开始训练基础分类器 09/13/2022 00:55:26 [INFO] bilstm_attention: 初始分类器accuracy为0.7518796992481203 09/13/2022 00:55:26 [INFO] bilstm_attention: 初始分类器召回率为0.6173003179947626 09/13/2022 00:55:26 [INFO] bilstm_attention: 初始分类器precision为0.6229347041847042 09/13/2022 00:55:26 [INFO] bilstm_attention: 初始分类器f1_score为0.5941863782550058 09/13/2022 00:55:27 [INFO] bilstm_attention: 开始第1次重训练 09/13/2022 00:57:32 [INFO] bilstm_attention: 开始第2次重训练 09/13/2022 00:59:42 [INFO] bilstm_attention: 开始第3次重训练 09/13/2022 01:01:52 [INFO] bilstm_attention: 开始第4次重训练 09/13/2022 01:04:01 [INFO] bilstm_attention: 开始第5次重训练 09/13/2022 01:06:11 [INFO] bilstm_attention: 开始第6次重训练 09/13/2022 01:10:34 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.7744360902255639 09/13/2022 01:10:34 [INFO] bilstm_attention: 训练完成,测试集召回率为0.6399644594089039 09/13/2022 01:10:34 [INFO] bilstm_attention: 训练完成,测试集Precision为0.6596520763187431 09/13/2022 01:10:34 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.6227029415754906 09/13/2022 08:46:43 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/13/2022 08:46:45 [INFO] data_processor: 正在从数据库读取原始数据 09/13/2022 08:46:45 [INFO] data_processor: 正在制作词表 09/13/2022 08:46:45 [INFO] data_processor: 正在获取词向量 09/13/2022 08:46:46 [INFO] bilstm_attention: 开始训练模型:决赛自主可控众测web自主可控运维管理系统 09/13/2022 08:46:46 [INFO] bilstm_attention: pytorch 初始化 09/13/2022 08:46:46 [INFO] bilstm_attention: 模型初始化 09/13/2022 08:46:46 [INFO] bilstm_attention: 开始训练基础分类器 09/13/2022 08:48:54 [INFO] bilstm_attention: 初始分类器accuracy为0.7518796992481203 09/13/2022 08:48:54 [INFO] bilstm_attention: 初始分类器召回率为0.6173003179947626 09/13/2022 08:48:54 [INFO] bilstm_attention: 初始分类器precision为0.6229347041847042 09/13/2022 08:48:54 [INFO] bilstm_attention: 初始分类器f1_score为0.5941863782550058 09/13/2022 08:48:54 [INFO] bilstm_attention: 开始第1次重训练 09/13/2022 08:51:13 [INFO] bilstm_attention: 开始第2次重训练 09/13/2022 08:53:21 [INFO] bilstm_attention: 开始第3次重训练 09/13/2022 08:55:30 [INFO] bilstm_attention: 开始第4次重训练 09/13/2022 08:57:40 [INFO] bilstm_attention: 开始第5次重训练 09/13/2022 08:59:49 [INFO] bilstm_attention: 开始第6次重训练 09/13/2022 09:04:10 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.7744360902255639 09/13/2022 09:04:10 [INFO] bilstm_attention: 训练完成,测试集召回率为0.6399644594089039 09/13/2022 09:04:10 [INFO] bilstm_attention: 训练完成,测试集Precision为0.6596520763187431 09/13/2022 09:04:10 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.6227029415754906 09/13/2022 09:10:07 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/13/2022 09:10:08 [INFO] data_processor: 正在从数据库读取原始数据 09/13/2022 09:10:08 [INFO] data_processor: 正在制作词表 09/13/2022 09:10:08 [INFO] data_processor: 正在获取词向量 09/13/2022 09:10:08 [INFO] bilstm_attention: 开始训练模型:决赛自主可控众测web自主可控运维管理系统 09/13/2022 09:10:08 [INFO] bilstm_attention: pytorch 初始化 09/13/2022 09:10:08 [INFO] bilstm_attention: 模型初始化 09/13/2022 09:10:08 [INFO] bilstm_attention: 开始训练基础分类器 09/13/2022 09:10:45 [INFO] bilstm_attention: 初始分类器accuracy为0.5714285714285714 09/13/2022 09:10:45 [INFO] bilstm_attention: 初始分类器召回率为0.3055555555555556 09/13/2022 09:10:45 [INFO] bilstm_attention: 初始分类器precision为0.1896990740740741 09/13/2022 09:10:45 [INFO] bilstm_attention: 初始分类器f1_score为0.23144123366345593 09/13/2022 09:10:45 [INFO] bilstm_attention: 开始第1次重训练 09/13/2022 09:11:27 [INFO] bilstm_attention: 开始第2次重训练 09/13/2022 09:12:13 [INFO] bilstm_attention: 开始第3次重训练 09/13/2022 09:13:03 [INFO] bilstm_attention: 开始第4次重训练 09/13/2022 09:13:56 [INFO] bilstm_attention: 开始第5次重训练 09/13/2022 09:14:49 [INFO] bilstm_attention: 开始第6次重训练 09/13/2022 09:15:43 [INFO] bilstm_attention: 开始第7次重训练 09/13/2022 09:17:36 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.5714285714285714 09/13/2022 09:17:36 [INFO] bilstm_attention: 训练完成,测试集召回率为0.3055555555555556 09/13/2022 09:17:36 [INFO] bilstm_attention: 训练完成,测试集Precision为0.1896990740740741 09/13/2022 09:17:36 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.23144123366345593 09/13/2022 16:28:19 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/13/2022 16:28:21 [INFO] data_processor: 正在从数据库读取原始数据 09/13/2022 16:28:21 [INFO] data_processor: 正在制作词表 09/13/2022 16:28:21 [INFO] data_processor: 正在获取词向量 09/13/2022 16:28:21 [INFO] bilstm_attention: 开始训练模型:航天中认自主可控众包测试练习赛 09/13/2022 16:28:21 [INFO] bilstm_attention: pytorch 初始化 09/13/2022 16:28:21 [INFO] bilstm_attention: 模型初始化 09/13/2022 16:28:21 [INFO] bilstm_attention: 开始训练基础分类器 09/13/2022 16:28:34 [INFO] bilstm_attention: 初始分类器accuracy为0.5555555555555556 09/13/2022 16:28:34 [INFO] bilstm_attention: 初始分类器召回率为0.2611111111111111 09/13/2022 16:28:34 [INFO] bilstm_attention: 初始分类器precision为0.15400641025641026 09/13/2022 16:28:34 [INFO] bilstm_attention: 初始分类器f1_score为0.19137529137529138 09/13/2022 16:28:34 [INFO] bilstm_attention: 开始第1次重训练 09/13/2022 16:28:48 [INFO] bilstm_attention: 开始第2次重训练 09/13/2022 16:29:04 [INFO] bilstm_attention: 开始第3次重训练 09/13/2022 16:29:20 [INFO] bilstm_attention: 开始第4次重训练 09/13/2022 16:29:38 [INFO] bilstm_attention: 开始第5次重训练 09/13/2022 16:30:13 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.5555555555555556 09/13/2022 16:30:13 [INFO] bilstm_attention: 训练完成,测试集召回率为0.2611111111111111 09/13/2022 16:30:13 [INFO] bilstm_attention: 训练完成,测试集Precision为0.15400641025641026 09/13/2022 16:30:13 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.19137529137529138 09/13/2022 16:32:05 [INFO] data_processor: 开始数据扩增 09/13/2022 16:32:33 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/13/2022 16:32:35 [INFO] data_processor: 正在从数据库读取原始数据 09/13/2022 16:32:35 [INFO] data_processor: 正在制作词表 09/13/2022 16:32:35 [INFO] data_processor: 正在获取词向量 09/13/2022 16:32:35 [INFO] bilstm_attention: 开始训练模型:航天中认自主可控众包测试练习赛 09/13/2022 16:32:35 [INFO] bilstm_attention: pytorch 初始化 09/13/2022 16:32:35 [INFO] bilstm_attention: 模型初始化 09/13/2022 16:32:35 [INFO] bilstm_attention: 开始训练基础分类器 09/13/2022 16:37:27 [INFO] bilstm_attention: 初始分类器accuracy为0.5333333333333333 09/13/2022 16:37:27 [INFO] bilstm_attention: 初始分类器召回率为0.3934259259259259 09/13/2022 16:37:27 [INFO] bilstm_attention: 初始分类器precision为0.45028860028860024 09/13/2022 16:37:27 [INFO] bilstm_attention: 初始分类器f1_score为0.41 09/13/2022 16:37:27 [INFO] bilstm_attention: 开始第1次重训练 09/13/2022 16:41:46 [INFO] bilstm_attention: 开始第2次重训练 09/13/2022 16:46:21 [INFO] bilstm_attention: 开始第3次重训练 09/13/2022 16:50:43 [INFO] bilstm_attention: 开始第4次重训练 09/13/2022 16:55:06 [INFO] bilstm_attention: 开始第5次重训练 09/13/2022 17:03:53 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.5777777777777777 09/13/2022 17:03:53 [INFO] bilstm_attention: 训练完成,测试集召回率为0.3524382716049383 09/13/2022 17:03:53 [INFO] bilstm_attention: 训练完成,测试集Precision为0.4136363636363636 09/13/2022 17:03:53 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.3679916815210933 09/13/2022 17:17:50 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/13/2022 17:17:52 [INFO] data_processor: 正在从数据库读取原始数据 09/13/2022 17:17:52 [INFO] data_processor: 正在制作词表 09/13/2022 17:17:52 [INFO] data_processor: 正在获取词向量 09/13/2022 17:17:52 [INFO] bilstm_attention: 开始训练模型:航天中认自主可控众包测试练习赛 09/13/2022 17:17:52 [INFO] bilstm_attention: pytorch 初始化 09/13/2022 17:17:52 [INFO] bilstm_attention: 模型初始化 09/13/2022 17:17:52 [INFO] bilstm_attention: 开始训练基础分类器 09/13/2022 17:18:05 [INFO] bilstm_attention: 初始分类器accuracy为0.6 09/13/2022 17:18:05 [INFO] bilstm_attention: 初始分类器召回率为0.3055555555555555 09/13/2022 17:18:05 [INFO] bilstm_attention: 初始分类器precision为0.1762820512820513 09/13/2022 17:18:05 [INFO] bilstm_attention: 初始分类器f1_score为0.22160401002506266 09/13/2022 17:18:05 [INFO] bilstm_attention: 开始第1次重训练 09/13/2022 17:18:19 [INFO] bilstm_attention: 开始第2次重训练 09/13/2022 17:18:36 [INFO] bilstm_attention: 开始第3次重训练 09/13/2022 17:18:52 [INFO] bilstm_attention: 开始第4次重训练 09/13/2022 17:19:08 [INFO] bilstm_attention: 开始第5次重训练 09/13/2022 17:19:40 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.6 09/13/2022 17:19:40 [INFO] bilstm_attention: 训练完成,测试集召回率为0.3055555555555555 09/13/2022 17:19:40 [INFO] bilstm_attention: 训练完成,测试集Precision为0.1762820512820513 09/13/2022 17:19:40 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.22160401002506266 09/13/2022 17:20:46 [INFO] data_processor: 开始数据扩增 09/13/2022 17:21:48 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/13/2022 17:21:50 [INFO] data_processor: 正在从数据库读取原始数据 09/13/2022 17:21:50 [INFO] data_processor: 正在制作词表 09/13/2022 17:21:50 [INFO] data_processor: 正在获取词向量 09/13/2022 17:21:50 [INFO] bilstm_attention: 开始训练模型:航天中认自主可控众包测试练习赛 09/13/2022 17:21:50 [INFO] bilstm_attention: pytorch 初始化 09/13/2022 17:21:50 [INFO] bilstm_attention: 模型初始化 09/13/2022 17:21:50 [INFO] bilstm_attention: 开始训练基础分类器 09/13/2022 17:26:08 [INFO] bilstm_attention: 初始分类器accuracy为0.6 09/13/2022 17:26:08 [INFO] bilstm_attention: 初始分类器召回率为0.42391975308641977 09/13/2022 17:26:08 [INFO] bilstm_attention: 初始分类器precision为0.39709595959595956 09/13/2022 17:26:08 [INFO] bilstm_attention: 初始分类器f1_score为0.3721230158730158 09/13/2022 17:26:09 [INFO] bilstm_attention: 开始第1次重训练 09/13/2022 17:30:35 [INFO] bilstm_attention: 开始第2次重训练 09/13/2022 17:35:02 [INFO] bilstm_attention: 开始第3次重训练 09/13/2022 17:39:29 [INFO] bilstm_attention: 开始第4次重训练 09/13/2022 17:48:22 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.7111111111111111 09/13/2022 17:48:22 [INFO] bilstm_attention: 训练完成,测试集召回率为0.43333333333333335 09/13/2022 17:48:22 [INFO] bilstm_attention: 训练完成,测试集Precision为0.541028416028416 09/13/2022 17:48:22 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.4296980252862606 09/13/2022 18:41:39 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/13/2022 18:41:41 [INFO] data_processor: 正在从数据库读取原始数据 09/13/2022 18:42:47 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/13/2022 18:42:49 [INFO] data_processor: 正在从数据库读取原始数据 09/13/2022 18:42:49 [INFO] data_processor: 正在制作词表 09/13/2022 18:42:49 [INFO] data_processor: 正在获取词向量 09/13/2022 18:42:49 [INFO] bilstm_attention: 开始训练模型:航天中认自主可控众包测试练习赛 09/13/2022 18:42:49 [INFO] bilstm_attention: pytorch 初始化 09/13/2022 18:42:49 [INFO] bilstm_attention: 模型初始化 09/13/2022 18:42:49 [INFO] bilstm_attention: 开始训练基础分类器 09/13/2022 18:43:03 [INFO] bilstm_attention: 初始分类器accuracy为0.6 09/13/2022 18:43:03 [INFO] bilstm_attention: 初始分类器召回率为0.3055555555555555 09/13/2022 18:43:03 [INFO] bilstm_attention: 初始分类器precision为0.1762820512820513 09/13/2022 18:43:03 [INFO] bilstm_attention: 初始分类器f1_score为0.22160401002506266 09/13/2022 18:43:03 [INFO] bilstm_attention: 开始第1次重训练 09/13/2022 18:43:18 [INFO] bilstm_attention: 开始第2次重训练 09/13/2022 18:43:35 [INFO] bilstm_attention: 开始第3次重训练 09/13/2022 18:43:52 [INFO] bilstm_attention: 开始第4次重训练 09/13/2022 18:44:09 [INFO] bilstm_attention: 开始第5次重训练 09/13/2022 18:44:45 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.6 09/13/2022 18:44:45 [INFO] bilstm_attention: 训练完成,测试集召回率为0.3055555555555555 09/13/2022 18:44:45 [INFO] bilstm_attention: 训练完成,测试集Precision为0.1762820512820513 09/13/2022 18:44:45 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.22160401002506266 09/13/2022 18:50:54 [INFO] data_processor: 开始数据扩增 09/13/2022 18:51:31 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/13/2022 18:51:33 [INFO] data_processor: 正在从数据库读取原始数据 09/13/2022 18:51:33 [INFO] data_processor: 正在制作词表 09/13/2022 18:51:33 [INFO] data_processor: 正在获取词向量 09/13/2022 18:51:33 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/13/2022 18:51:33 [INFO] bilstm_attention: pytorch 初始化 09/13/2022 18:51:33 [INFO] bilstm_attention: 模型初始化 09/13/2022 18:51:33 [INFO] bilstm_attention: 开始训练基础分类器 09/13/2022 18:52:00 [INFO] bilstm_attention: 初始分类器accuracy为0.5959595959595959 09/13/2022 18:52:00 [INFO] bilstm_attention: 初始分类器召回率为0.3786309523809524 09/13/2022 18:52:00 [INFO] bilstm_attention: 初始分类器precision为0.3797631072631073 09/13/2022 18:52:00 [INFO] bilstm_attention: 初始分类器f1_score为0.3402956567242281 09/13/2022 18:52:00 [INFO] bilstm_attention: 开始第1次重训练 09/13/2022 18:52:32 [INFO] bilstm_attention: 开始第2次重训练 09/13/2022 18:53:05 [INFO] bilstm_attention: 开始第3次重训练 09/13/2022 18:53:39 [INFO] bilstm_attention: 开始第4次重训练 09/13/2022 18:54:14 [INFO] bilstm_attention: 开始第5次重训练 09/13/2022 18:54:49 [INFO] bilstm_attention: 开始第6次重训练 09/13/2022 18:55:24 [INFO] bilstm_attention: 开始第7次重训练 09/13/2022 18:56:01 [INFO] bilstm_attention: 开始第8次重训练 09/13/2022 18:57:14 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.5656565656565656 09/13/2022 18:57:14 [INFO] bilstm_attention: 训练完成,测试集召回率为0.3141005291005291 09/13/2022 18:57:14 [INFO] bilstm_attention: 训练完成,测试集Precision为0.3321634714491858 09/13/2022 18:57:14 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.3096101888104994 09/13/2022 18:58:30 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/13/2022 18:58:32 [INFO] data_processor: 正在从数据库读取原始数据 09/13/2022 18:58:32 [INFO] data_processor: 正在制作词表 09/13/2022 18:58:32 [INFO] data_processor: 正在获取词向量 09/13/2022 18:58:32 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/13/2022 18:58:32 [INFO] bilstm_attention: pytorch 初始化 09/13/2022 18:58:32 [INFO] bilstm_attention: 模型初始化 09/13/2022 18:58:32 [INFO] bilstm_attention: 开始训练基础分类器 09/13/2022 19:02:41 [INFO] bilstm_attention: 初始分类器accuracy为0.5353535353535354 09/13/2022 19:02:41 [INFO] bilstm_attention: 初始分类器召回率为0.5086838624338624 09/13/2022 19:02:41 [INFO] bilstm_attention: 初始分类器precision为0.47810090702947844 09/13/2022 19:02:41 [INFO] bilstm_attention: 初始分类器f1_score为0.46082845725702865 09/13/2022 19:02:41 [INFO] bilstm_attention: 开始第1次重训练 09/13/2022 19:06:57 [INFO] bilstm_attention: 开始第2次重训练 09/13/2022 19:11:17 [INFO] bilstm_attention: 开始第3次重训练 09/13/2022 19:15:36 [INFO] bilstm_attention: 开始第4次重训练 09/13/2022 19:19:57 [INFO] bilstm_attention: 开始第5次重训练 09/13/2022 19:24:19 [INFO] bilstm_attention: 开始第6次重训练 09/13/2022 19:28:41 [INFO] bilstm_attention: 开始第7次重训练 09/13/2022 19:37:27 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.6060606060606061 09/13/2022 19:37:27 [INFO] bilstm_attention: 训练完成,测试集召回率为0.35003306878306883 09/13/2022 19:37:27 [INFO] bilstm_attention: 训练完成,测试集Precision为0.3418775668775669 09/13/2022 19:37:27 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.3255317017351179 09/13/2022 19:46:50 [INFO] data_processor: 开始数据扩增 09/13/2022 19:51:11 [INFO] data_processor: 开始数据扩增 09/13/2022 19:51:47 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/13/2022 19:51:49 [INFO] data_processor: 正在从数据库读取原始数据 09/13/2022 19:51:49 [INFO] data_processor: 正在制作词表 09/13/2022 19:51:49 [INFO] data_processor: 正在获取词向量 09/13/2022 19:51:49 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/13/2022 19:51:49 [INFO] bilstm_attention: pytorch 初始化 09/13/2022 19:51:49 [INFO] bilstm_attention: 模型初始化 09/13/2022 19:51:49 [INFO] bilstm_attention: 开始训练基础分类器 09/13/2022 19:52:16 [INFO] bilstm_attention: 初始分类器accuracy为0.5656565656565656 09/13/2022 19:52:16 [INFO] bilstm_attention: 初始分类器召回率为0.42554421768707484 09/13/2022 19:52:16 [INFO] bilstm_attention: 初始分类器precision为0.4392645846217275 09/13/2022 19:52:16 [INFO] bilstm_attention: 初始分类器f1_score为0.419297052154195 09/13/2022 19:52:16 [INFO] bilstm_attention: 开始第1次重训练 09/13/2022 19:52:47 [INFO] bilstm_attention: 开始第2次重训练 09/13/2022 19:53:19 [INFO] bilstm_attention: 开始第3次重训练 09/13/2022 19:53:52 [INFO] bilstm_attention: 开始第4次重训练 09/13/2022 19:54:25 [INFO] bilstm_attention: 开始第5次重训练 09/13/2022 19:54:59 [INFO] bilstm_attention: 开始第6次重训练 09/13/2022 19:55:34 [INFO] bilstm_attention: 开始第7次重训练 09/13/2022 19:56:10 [INFO] bilstm_attention: 开始第8次重训练 09/13/2022 19:56:46 [INFO] bilstm_attention: 开始第9次重训练 09/13/2022 19:57:59 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.6767676767676768 09/13/2022 19:57:59 [INFO] bilstm_attention: 训练完成,测试集召回率为0.5370068027210884 09/13/2022 19:57:59 [INFO] bilstm_attention: 训练完成,测试集Precision为0.5570512820512821 09/13/2022 19:57:59 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.5201643990929704 09/13/2022 19:58:22 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/13/2022 19:58:24 [INFO] data_processor: 正在从数据库读取原始数据 09/13/2022 19:58:24 [INFO] data_processor: 正在制作词表 09/13/2022 19:58:24 [INFO] data_processor: 正在获取词向量 09/13/2022 19:58:24 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/13/2022 19:58:24 [INFO] bilstm_attention: pytorch 初始化 09/13/2022 19:58:24 [INFO] bilstm_attention: 模型初始化 09/13/2022 19:58:24 [INFO] bilstm_attention: 开始训练基础分类器 09/13/2022 20:02:33 [INFO] bilstm_attention: 初始分类器accuracy为0.5050505050505051 09/13/2022 20:02:33 [INFO] bilstm_attention: 初始分类器召回率为0.4145975056689342 09/13/2022 20:02:33 [INFO] bilstm_attention: 初始分类器precision为0.3787721603793032 09/13/2022 20:02:33 [INFO] bilstm_attention: 初始分类器f1_score为0.3873010495370744 09/13/2022 20:02:33 [INFO] bilstm_attention: 开始第1次重训练 09/13/2022 20:06:47 [INFO] bilstm_attention: 开始第2次重训练 09/13/2022 20:11:05 [INFO] bilstm_attention: 开始第3次重训练 09/13/2022 20:15:24 [INFO] bilstm_attention: 开始第4次重训练 09/13/2022 20:19:46 [INFO] bilstm_attention: 开始第5次重训练 09/13/2022 20:29:23 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.494949494949495 09/13/2022 20:29:23 [INFO] bilstm_attention: 训练完成,测试集召回率为0.4907511337868481 09/13/2022 20:29:23 [INFO] bilstm_attention: 训练完成,测试集Precision为0.5140249433106575 09/13/2022 20:29:23 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.44841301555587265 09/16/2022 12:26:14 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/16/2022 12:26:16 [INFO] data_processor: 正在从数据库读取原始数据 09/16/2022 12:26:16 [INFO] data_processor: 正在制作词表 09/16/2022 12:26:16 [INFO] data_processor: 正在获取词向量 09/16/2022 12:26:16 [INFO] bilstm_attention: 开始训练模型:趣享GIF众包测试201908试题 09/16/2022 12:26:16 [INFO] bilstm_attention: pytorch 初始化 09/16/2022 12:26:16 [INFO] bilstm_attention: 模型初始化 09/16/2022 12:26:16 [INFO] bilstm_attention: 开始训练基础分类器 09/16/2022 12:30:25 [INFO] bilstm_attention: 初始分类器accuracy为0.8383838383838383 09/16/2022 12:30:25 [INFO] bilstm_attention: 初始分类器召回率为0.8513095238095237 09/16/2022 12:30:25 [INFO] bilstm_attention: 初始分类器precision为0.8465816326530612 09/16/2022 12:30:25 [INFO] bilstm_attention: 初始分类器f1_score为0.8303927025355595 09/16/2022 12:30:25 [INFO] bilstm_attention: 开始第1次重训练 09/16/2022 12:34:59 [INFO] bilstm_attention: 开始第2次重训练 09/16/2022 12:39:22 [INFO] bilstm_attention: 开始第3次重训练 09/16/2022 12:43:37 [INFO] bilstm_attention: 开始第4次重训练 09/16/2022 12:47:56 [INFO] bilstm_attention: 开始第5次重训练 09/16/2022 12:52:16 [INFO] bilstm_attention: 开始第6次重训练 09/16/2022 12:56:30 [INFO] bilstm_attention: 开始第7次重训练 09/16/2022 13:00:40 [INFO] bilstm_attention: 开始第8次重训练 09/16/2022 13:09:00 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.8585858585858586 09/16/2022 13:09:00 [INFO] bilstm_attention: 训练完成,测试集召回率为0.8657142857142857 09/16/2022 13:09:00 [INFO] bilstm_attention: 训练完成,测试集Precision为0.8751530612244898 09/16/2022 13:09:00 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.8496129663986807 09/16/2022 13:09:34 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/16/2022 13:09:35 [INFO] data_processor: 正在从数据库读取原始数据 09/16/2022 13:09:36 [INFO] data_processor: 正在制作词表 09/16/2022 13:09:36 [INFO] data_processor: 正在获取词向量 09/16/2022 13:09:36 [INFO] bilstm_attention: 开始训练模型:航天中认自主可控众包测试练习赛 09/16/2022 13:09:36 [INFO] bilstm_attention: pytorch 初始化 09/16/2022 13:09:36 [INFO] bilstm_attention: 模型初始化 09/16/2022 13:09:36 [INFO] bilstm_attention: 开始训练基础分类器 09/16/2022 13:13:53 [INFO] bilstm_attention: 初始分类器accuracy为0.6 09/16/2022 13:13:53 [INFO] bilstm_attention: 初始分类器召回率为0.42391975308641977 09/16/2022 13:13:53 [INFO] bilstm_attention: 初始分类器precision为0.39709595959595956 09/16/2022 13:13:53 [INFO] bilstm_attention: 初始分类器f1_score为0.3721230158730158 09/16/2022 13:13:53 [INFO] bilstm_attention: 开始第1次重训练 09/16/2022 13:18:11 [INFO] bilstm_attention: 开始第2次重训练 09/16/2022 13:22:24 [INFO] bilstm_attention: 开始第3次重训练 09/16/2022 13:26:39 [INFO] bilstm_attention: 开始第4次重训练 09/16/2022 13:36:25 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/16/2022 13:36:27 [INFO] data_processor: 正在从数据库读取原始数据 09/16/2022 13:36:31 [INFO] data_processor: 正在制作词表 09/16/2022 13:36:32 [INFO] data_processor: 正在获取词向量 09/16/2022 13:36:32 [INFO] bilstm_attention: 开始训练模型:航天中认自主可控众包测试练习赛 09/16/2022 13:36:32 [INFO] bilstm_attention: pytorch 初始化 09/16/2022 13:36:32 [INFO] bilstm_attention: 模型初始化 09/16/2022 13:36:32 [INFO] bilstm_attention: 开始训练基础分类器 09/16/2022 13:40:55 [INFO] bilstm_attention: 初始分类器accuracy为0.6 09/16/2022 13:40:55 [INFO] bilstm_attention: 初始分类器召回率为0.42391975308641977 09/16/2022 13:40:55 [INFO] bilstm_attention: 初始分类器precision为0.39709595959595956 09/16/2022 13:40:55 [INFO] bilstm_attention: 初始分类器f1_score为0.3721230158730158 09/16/2022 13:45:25 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/16/2022 13:45:28 [INFO] data_processor: 正在从数据库读取原始数据 09/16/2022 13:45:28 [INFO] data_processor: 正在制作词表 09/16/2022 13:45:28 [INFO] data_processor: 正在获取词向量 09/16/2022 13:45:28 [INFO] bilstm_attention: 开始训练模型:航天中认自主可控众包测试练习赛 09/16/2022 13:45:28 [INFO] bilstm_attention: pytorch 初始化 09/16/2022 13:45:28 [INFO] bilstm_attention: 模型初始化 09/16/2022 13:45:28 [INFO] bilstm_attention: 开始训练基础分类器 09/16/2022 13:49:39 [INFO] bilstm_attention: 初始分类器accuracy为0.6 09/16/2022 13:49:39 [INFO] bilstm_attention: 初始分类器召回率为0.42391975308641977 09/16/2022 13:49:39 [INFO] bilstm_attention: 初始分类器precision为0.39709595959595956 09/16/2022 13:49:39 [INFO] bilstm_attention: 初始分类器f1_score为0.3721230158730158 09/16/2022 13:55:27 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/16/2022 13:55:30 [INFO] data_processor: 正在从数据库读取原始数据 09/16/2022 13:55:30 [INFO] data_processor: 正在制作词表 09/16/2022 13:55:30 [INFO] data_processor: 正在获取词向量 09/16/2022 13:55:30 [INFO] bilstm_attention: 开始训练模型:航天中认自主可控众包测试练习赛 09/16/2022 13:55:30 [INFO] bilstm_attention: pytorch 初始化 09/16/2022 13:55:30 [INFO] bilstm_attention: 模型初始化 09/16/2022 13:55:30 [INFO] bilstm_attention: 开始训练基础分类器 09/16/2022 13:59:39 [INFO] bilstm_attention: 初始分类器accuracy为0.6 09/16/2022 13:59:39 [INFO] bilstm_attention: 初始分类器召回率为0.42391975308641977 09/16/2022 13:59:39 [INFO] bilstm_attention: 初始分类器precision为0.39709595959595956 09/16/2022 13:59:39 [INFO] bilstm_attention: 初始分类器f1_score为0.3721230158730158 09/16/2022 14:00:56 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/16/2022 14:00:59 [INFO] data_processor: 正在从数据库读取原始数据 09/16/2022 14:00:59 [INFO] data_processor: 正在制作词表 09/16/2022 14:00:59 [INFO] data_processor: 正在获取词向量 09/16/2022 14:00:59 [INFO] bilstm_attention: 开始训练模型:航天中认自主可控众包测试练习赛 09/16/2022 14:00:59 [INFO] bilstm_attention: pytorch 初始化 09/16/2022 14:00:59 [INFO] bilstm_attention: 模型初始化 09/16/2022 14:00:59 [INFO] bilstm_attention: 开始训练基础分类器 09/16/2022 14:05:12 [INFO] bilstm_attention: 初始分类器accuracy为0.6 09/16/2022 14:05:12 [INFO] bilstm_attention: 初始分类器召回率为0.42391975308641977 09/16/2022 14:05:12 [INFO] bilstm_attention: 初始分类器precision为0.39709595959595956 09/16/2022 14:05:12 [INFO] bilstm_attention: 初始分类器f1_score为0.3721230158730158 09/16/2022 14:10:44 [INFO] bilstm_attention: 开始第1次重训练 09/16/2022 14:15:02 [INFO] bilstm_attention: 开始第2次重训练 09/16/2022 14:19:20 [INFO] bilstm_attention: 开始第3次重训练 09/16/2022 14:23:39 [INFO] bilstm_attention: 开始第4次重训练 09/16/2022 14:26:20 [DEBUG] tpu_cluster_resolver: Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client. 09/16/2022 14:26:23 [INFO] data_processor: 正在从数据库读取原始数据 09/16/2022 14:26:23 [INFO] data_processor: 正在制作词表 09/16/2022 14:26:23 [INFO] data_processor: 正在获取词向量 09/16/2022 14:26:23 [INFO] bilstm_attention: 开始训练模型:航天中认自主可控众包测试练习赛 09/16/2022 14:26:23 [INFO] bilstm_attention: pytorch 初始化 09/16/2022 14:26:23 [INFO] bilstm_attention: 模型初始化 09/16/2022 14:26:23 [INFO] bilstm_attention: 开始训练基础分类器 09/16/2022 14:30:36 [INFO] bilstm_attention: 初始分类器accuracy为0.6 09/16/2022 14:30:36 [INFO] bilstm_attention: 初始分类器召回率为0.42391975308641977 09/16/2022 14:30:36 [INFO] bilstm_attention: 初始分类器precision为0.39709595959595956 09/16/2022 14:30:36 [INFO] bilstm_attention: 初始分类器f1_score为0.3721230158730158 09/16/2022 14:30:36 [INFO] bilstm_attention: 开始第1次重训练 09/16/2022 14:34:51 [INFO] bilstm_attention: 开始第2次重训练 09/16/2022 14:39:08 [INFO] bilstm_attention: 开始第3次重训练 09/16/2022 14:43:25 [INFO] bilstm_attention: 开始第4次重训练 09/16/2022 14:52:01 [INFO] bilstm_attention: 训练完成,测试集Accuracy为0.7111111111111111 09/16/2022 14:52:01 [INFO] bilstm_attention: 训练完成,测试集召回率为0.43333333333333335 09/16/2022 14:52:01 [INFO] bilstm_attention: 训练完成,测试集Precision为0.541028416028416 09/16/2022 14:52:01 [INFO] bilstm_attention: 训练完成,测试集f1_score为0.4296980252862606