123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 |
- # torch imports
- import torch
- # other modules
- import argparse
- # PATHING
- import os
- import sys
- root = os.path.abspath(os.curdir)
- sys.path.append(root)
- # internal imports
- from utils.conv.sparse_rs import RSAttack
- from utils.conv.models import *
- from utils.helpers import *
- def main():
- # Parse the only input, path
- parser = argparse.ArgumentParser(description='Calculates the clean accuracy of network using sparse rs')
- parser.add_argument("exp_path", help="pass the RELATIVE path of the PARENT directory of your network (net.pth)")
- args = parser.parse_args()
- exp_path = root + '/' + args.exp_path + '/'
- # since we only tested with k=10, we can simply check the name of dir (rob or og)
- if 'og' in exp_path.split('/'):
- k = 0
- else:
- k = 10
- # check cuda
- if torch.cuda.is_available():
- device = torch.device('cuda:0')
- else:
- device = torch.device('cpu')
- # load data and network
- Data = prep_CIFAR(root, bs=256)
- net_path = exp_path + 'net.pth'
- if k == 0:
- net = VGG().to(device)
- else:
- net = rob_VGG(k).to(device)
- net.load_state_dict(torch.load(net_path, map_location=device))
- net.eval()
- # test the accuracy
- correct = 0
- total = 0
- with torch.no_grad():
- for inputs, labels in zip(Data['x_test'],Data['y_test']):
- inputs = inputs.to(device)
- labels = labels.to(device)
- outputs = net(inputs)
- _, predicted = torch.max(outputs.data, 1)
- total += labels.size(0)
- correct += (predicted == labels).sum().item()
- acc = 100 * (correct / total)
- print("Clean Accuracy: ",acc,'%')
- if __name__ == '__main__':
- main()
|