genMatrix_profiled.txt 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244
  1. 61879713 function calls (61879701 primitive calls) in 46.441 seconds
  2. Ordered by: standard name
  3. ncalls tottime percall cumtime percall filename:lineno(function)
  4. 82 0.000 0.000 0.000 0.000 <frozen importlib._bootstrap>:1009(_handle_fromlist)
  5. 82 0.000 0.000 0.000 0.000 <frozen importlib._bootstrap>:416(parent)
  6. 1 0.003 0.003 46.441 46.441 <string>:1(<module>)
  7. 6486 0.017 0.000 0.043 0.000 __init__.py:550(__init__)
  8. 6486 0.009 0.000 0.025 0.000 __init__.py:619(update)
  9. 6 0.000 0.000 0.000 0.000 _index.py:129(_validate_indices)
  10. 6 0.000 0.000 0.000 0.000 _index.py:248(_unpack_index)
  11. 6 0.000 0.000 0.000 0.000 _index.py:287(_check_ellipsis)
  12. 6 0.000 0.000 0.002 0.000 _index.py:34(__getitem__)
  13. 24036 0.024 0.000 0.024 0.000 _internal.py:889(npy_ctypes_check)
  14. 59430 0.022 0.000 0.584 0.000 _methods.py:26(_amax)
  15. 59430 0.020 0.000 0.468 0.000 _methods.py:30(_amin)
  16. 12018 0.004 0.000 0.060 0.000 _methods.py:34(_sum)
  17. 553400 0.160 0.000 1.261 0.000 _methods.py:42(_any)
  18. 184 0.000 0.000 0.000 0.000 _util.py:129(_prune_array)
  19. 6536 0.002 0.000 0.007 0.000 abc.py:137(__instancecheck__)
  20. 8 0.000 0.000 0.000 0.000 arraysetops.py:138(_unpack_tuple)
  21. 8 0.000 0.000 0.000 0.000 arraysetops.py:151(unique)
  22. 8 0.000 0.000 0.000 0.000 arraysetops.py:299(_unique1d)
  23. 31200 0.013 0.000 0.017 0.000 base.py:1189(isspmatrix)
  24. 114420 0.058 0.000 0.250 0.000 base.py:242(nnz)
  25. 10376 0.003 0.000 0.008 0.000 base.py:298(asformat)
  26. 26 0.000 0.000 0.009 0.000 base.py:369(__eq__)
  27. 6 0.000 0.000 0.005 0.001 base.py:390(_add_sparse)
  28. 12 0.000 0.000 0.010 0.001 base.py:406(__add__)
  29. 6 0.000 0.000 0.002 0.000 base.py:454(__mul__)
  30. 56 0.000 0.000 0.000 0.000 base.py:674(__getattr__)
  31. 51882 0.043 0.000 0.043 0.000 base.py:70(__init__)
  32. 204902 0.031 0.000 0.031 0.000 base.py:84(get_shape)
  33. 12 0.000 0.000 0.003 0.000 base.py:885(tocsr)
  34. 6486 0.043 0.000 0.076 0.000 basic.py:2052(factorial)
  35. 12 0.000 0.000 0.002 0.000 compressed.py:1008(tocoo)
  36. 28 0.000 0.000 0.001 0.000 compressed.py:1054(__get_has_canonical_format)
  37. 28 0.000 0.000 0.000 0.000 compressed.py:1075(__set_has_canonical_format)
  38. 28 0.000 0.000 0.001 0.000 compressed.py:1083(sum_duplicates)
  39. 392 0.000 0.000 0.000 0.000 compressed.py:110(getnnz)
  40. 28 0.000 0.000 0.000 0.000 compressed.py:1114(__set_sorted)
  41. 92 0.000 0.000 0.001 0.000 compressed.py:1139(prune)
  42. 12 0.000 0.000 0.008 0.001 compressed.py:1209(_binopt)
  43. 12 0.000 0.000 0.000 0.000 compressed.py:127(_set_self)
  44. 12 0.000 0.000 0.000 0.000 compressed.py:1271(_process_slice)
  45. 80 0.001 0.000 0.003 0.000 compressed.py:138(check_format)
  46. 38 0.000 0.000 0.000 0.000 compressed.py:217(__eq__)
  47. 80/68 0.001 0.000 0.008 0.000 compressed.py:30(__init__)
  48. 12 0.000 0.000 0.008 0.001 compressed.py:354(_add_sparse)
  49. 6 0.000 0.000 0.002 0.000 compressed.py:649(_get_sliceXslice)
  50. 6 0.000 0.000 0.002 0.000 compressed.py:777(_get_submatrix)
  51. 2 0.000 0.000 0.000 0.000 construct.py:165(<listcomp>)
  52. 6 0.000 0.000 0.000 0.000 construct.py:27(spdiags)
  53. 10350 0.030 0.000 3.834 0.000 construct.py:435(hstack)
  54. 10350 0.907 0.000 3.805 0.000 construct.py:502(bmat)
  55. 20700 0.010 0.000 0.013 0.000 construct.py:560(<genexpr>)
  56. 31050 0.045 0.000 0.084 0.000 construct.py:598(<genexpr>)
  57. 10350 0.026 0.000 0.030 0.000 construct.py:600(<listcomp>)
  58. 2 0.000 0.000 0.001 0.001 construct.py:65(diags)
  59. 51794 0.340 0.000 3.383 0.000 coo.py:128(__init__)
  60. 114028 0.159 0.000 0.192 0.000 coo.py:241(getnnz)
  61. 51794 0.320 0.000 2.207 0.000 coo.py:267(_check)
  62. 10356 0.023 0.000 0.516 0.000 coo.py:293(transpose)
  63. 6 0.000 0.000 0.002 0.000 coo.py:332(tocsc)
  64. 44 0.001 0.000 0.011 0.000 coo.py:374(tocsr)
  65. 20700 0.003 0.000 0.003 0.000 coo.py:416(tocoo)
  66. 6 0.000 0.000 0.002 0.000 coo.py:516(_with_data)
  67. 20700 0.007 0.000 0.010 0.000 coo.py:596(isspmatrix_coo)
  68. 68 0.000 0.000 0.000 0.000 csc.py:232(_swap)
  69. 234 0.000 0.000 0.000 0.000 csr.py:228(_swap)
  70. 6 0.000 0.000 0.002 0.000 data.py:122(_mul_scalar)
  71. 51882 0.035 0.000 0.078 0.000 data.py:22(__init__)
  72. 20806 0.005 0.000 0.005 0.000 data.py:25(_get_dtype)
  73. 14 0.001 0.000 0.002 0.000 dia.py:348(tocoo)
  74. 8 0.000 0.000 0.000 0.000 dia.py:397(isspmatrix_dia)
  75. 8 0.000 0.000 0.001 0.000 dia.py:78(__init__)
  76. 20700 0.023 0.000 0.058 0.000 fromnumeric.py:1583(ravel)
  77. 10350 0.007 0.000 0.039 0.000 fromnumeric.py:1694(nonzero)
  78. 553400 0.453 0.000 3.780 0.000 fromnumeric.py:2083(any)
  79. 20700 0.022 0.000 0.108 0.000 fromnumeric.py:2252(cumsum)
  80. 11124 0.010 0.000 0.077 0.000 fromnumeric.py:2664(prod)
  81. 20814 0.006 0.000 0.006 0.000 fromnumeric.py:2847(ndim)
  82. 4638 0.002 0.000 0.044 0.000 fromnumeric.py:3385(product)
  83. 31050 0.025 0.000 0.118 0.000 fromnumeric.py:54(_wrapfunc)
  84. 564524 1.101 0.000 3.393 0.000 fromnumeric.py:69(_wrapreduction)
  85. 564524 0.183 0.000 0.183 0.000 fromnumeric.py:70(<dictcomp>)
  86. 24036 0.052 0.000 0.098 0.000 function_base.py:2031(__init__)
  87. 24036 0.041 0.000 4.162 0.000 function_base.py:2063(__call__)
  88. 24036 0.123 0.000 0.683 0.000 function_base.py:2093(_get_ufunc_and_otypes)
  89. 24036 0.015 0.000 0.125 0.000 function_base.py:2115(<listcomp>)
  90. 48072 0.015 0.000 0.015 0.000 function_base.py:2116(<genexpr>)
  91. 24036 0.024 0.000 0.024 0.000 function_base.py:2120(<listcomp>)
  92. 24036 0.024 0.000 0.053 0.000 function_base.py:2144(<listcomp>)
  93. 24036 0.186 0.000 4.121 0.000 function_base.py:2154(_vectorize_call)
  94. 24036 0.012 0.000 0.156 0.000 function_base.py:2164(<listcomp>)
  95. 24036 0.023 0.000 0.039 0.000 function_base.py:258(iterable)
  96. 20700 0.046 0.000 0.210 0.000 function_base.py:4641(append)
  97. 1 0.001 0.001 46.438 46.438 genMatrix.py:14(main)
  98. 166196 0.273 0.000 0.273 0.000 getlimits.py:497(__init__)
  99. 83098 0.047 0.000 0.047 0.000 getlimits.py:508(min)
  100. 83098 0.029 0.000 0.029 0.000 getlimits.py:522(max)
  101. 17 0.000 0.000 0.001 0.000 iostream.py:197(schedule)
  102. 14 0.000 0.000 0.000 0.000 iostream.py:309(_is_master_process)
  103. 14 0.000 0.000 0.000 0.000 iostream.py:322(_schedule_flush)
  104. 14 0.000 0.000 0.001 0.000 iostream.py:384(write)
  105. 17 0.000 0.000 0.000 0.000 iostream.py:93(_event_pipe)
  106. 60 0.000 0.000 0.000 0.000 numeric.py:2035(isscalar)
  107. 784822 0.225 0.000 1.129 0.000 numeric.py:469(asarray)
  108. 51786 0.016 0.000 0.054 0.000 numeric.py:541(asanyarray)
  109. 4638 0.023 0.000 0.790 0.000 oscillators.py:32(__init__)
  110. 4638 0.019 0.000 0.471 0.000 oscillators.py:46(<listcomp>)
  111. 9276 0.008 0.000 0.244 0.000 oscillators.py:48(<listcomp>)
  112. 3820867 5.806 0.000 10.241 0.000 oscillators.py:55(_transformState)
  113. 8000550 12.988 0.000 30.910 0.000 oscillators.py:99(apply)
  114. 6 0.000 0.000 0.002 0.000 phi1234.py:100(transpose)
  115. 1 0.000 0.000 0.000 0.000 phi1234.py:106(__init__)
  116. 2 0.000 0.000 4.813 2.406 phi1234.py:126(buildFullBasis)
  117. 1 4.055 4.055 41.623 41.623 phi1234.py:152(buildMatrix)
  118. 2 0.000 0.000 0.004 0.002 phi1234.py:181(<listcomp>)
  119. 2 0.000 0.000 0.003 0.002 phi1234.py:183(<listcomp>)
  120. 2 0.005 0.002 0.122 0.061 phi1234.py:187(<listcomp>)
  121. 2 0.003 0.001 0.106 0.053 phi1234.py:194(<listcomp>)
  122. 2 0.015 0.008 0.642 0.321 phi1234.py:198(<listcomp>)
  123. 2 0.015 0.007 0.382 0.191 phi1234.py:203(<listcomp>)
  124. 6486 0.028 0.000 0.185 0.000 phi1234.py:29(comb)
  125. 44 0.000 0.000 0.010 0.000 phi1234.py:40(__init__)
  126. 10350 0.075 0.000 5.319 0.001 phi1234.py:51(addColumn)
  127. 6 0.000 0.000 0.005 0.001 phi1234.py:55(finalize)
  128. 44 0.000 0.000 0.000 0.000 phi1234.py:60(check)
  129. 12 0.000 0.000 0.010 0.001 phi1234.py:65(__add__)
  130. 6 0.000 0.000 0.006 0.001 phi1234.py:70(__mul__)
  131. 6 0.000 0.000 0.003 0.001 phi1234.py:77(to)
  132. 553400 0.727 0.000 8.008 0.000 scimath.py:185(sqrt)
  133. 553400 1.271 0.000 7.281 0.000 scimath.py:99(_fix_real_lt_zero)
  134. 14 0.000 0.000 0.000 0.000 shape_base.py:1154(tile)
  135. 28 0.000 0.000 0.000 0.000 shape_base.py:1226(<genexpr>)
  136. 12 0.000 0.000 0.000 0.000 shape_base.py:25(atleast_1d)
  137. 10358 0.039 0.000 0.050 0.000 shape_base.py:83(atleast_2d)
  138. 17 0.001 0.000 0.001 0.000 socket.py:342(send)
  139. 83098 0.245 0.000 0.613 0.000 sputils.py:120(get_index_dtype)
  140. 60 0.000 0.000 0.001 0.000 sputils.py:182(isscalarlike)
  141. 20786 0.019 0.000 0.025 0.000 sputils.py:187(isintlike)
  142. 20820 0.016 0.000 0.040 0.000 sputils.py:209(isshape)
  143. 10404 0.013 0.000 0.023 0.000 sputils.py:21(upcast)
  144. 88 0.000 0.000 0.000 0.000 sputils.py:239(isdense)
  145. 51882 0.156 0.000 0.246 0.000 sputils.py:266(check_shape)
  146. 155646 0.057 0.000 0.071 0.000 sputils.py:279(<genexpr>)
  147. 51874 0.047 0.000 0.124 0.000 sputils.py:92(to_native)
  148. 14 0.000 0.000 0.000 0.000 sputils.py:96(getdtype)
  149. 6429072 1.700 0.000 1.700 0.000 statefuncs.py:103(__getitem__)
  150. 3450 0.010 0.000 1.464 0.000 statefuncs.py:107(parityReversed)
  151. 297970 0.350 0.000 3.908 0.000 statefuncs.py:17(omega)
  152. 2 0.000 0.000 4.813 2.406 statefuncs.py:188(__init__)
  153. 2 0.003 0.001 1.467 0.733 statefuncs.py:205(<listcomp>)
  154. 2 0.001 0.001 0.004 0.002 statefuncs.py:209(<dictcomp>)
  155. 2 0.001 0.000 0.003 0.001 statefuncs.py:210(<dictcomp>)
  156. 19976789 2.474 0.000 2.474 0.000 statefuncs.py:217(__getitem__)
  157. 177628 0.447 0.000 1.394 0.000 statefuncs.py:220(lookup)
  158. 1440 0.000 0.000 0.000 0.000 statefuncs.py:23(k)
  159. 2 0.014 0.007 0.385 0.193 statefuncs.py:265(__buildRMlist)
  160. 3832885 2.359 0.000 7.017 0.000 statefuncs.py:28(__init__)
  161. 2 0.000 0.000 0.004 0.002 statefuncs.py:285(<listcomp>)
  162. 2 0.000 0.000 0.000 0.000 statefuncs.py:308(__divideRMlist)
  163. 2 0.000 0.000 0.000 0.000 statefuncs.py:313(<listcomp>)
  164. 2 0.000 0.000 0.000 0.000 statefuncs.py:314(<listcomp>)
  165. 2 0.037 0.019 3.338 1.669 statefuncs.py:323(__buildBasis)
  166. 240398 0.069 0.000 0.069 0.000 statefuncs.py:55(<lambda>)
  167. 240398 0.075 0.000 3.241 0.000 statefuncs.py:57(<lambda>)
  168. 333857 0.049 0.000 0.049 0.000 statefuncs.py:76(isParityEigenstate)
  169. 6900 0.007 0.000 0.011 0.000 statefuncs.py:80(Kparity)
  170. 355256 0.154 0.000 0.154 0.000 statefuncs.py:87(__eq__)
  171. 383555 0.239 0.000 0.340 0.000 statefuncs.py:91(__hash__)
  172. 1065551 0.405 0.000 0.405 0.000 statefuncs.py:94(__setitem__)
  173. 17 0.000 0.000 0.000 0.000 threading.py:1050(_wait_for_tstate_lock)
  174. 17 0.000 0.000 0.000 0.000 threading.py:1092(is_alive)
  175. 17 0.000 0.000 0.000 0.000 threading.py:507(is_set)
  176. 553400 0.168 0.000 0.168 0.000 type_check.py:170(imag)
  177. 553400 1.338 0.000 1.506 0.000 type_check.py:250(isreal)
  178. 2 0.000 0.000 0.000 0.000 type_check.py:282(iscomplexobj)
  179. 2 0.000 0.000 0.000 0.000 type_check.py:645(common_type)
  180. 6536 0.005 0.000 0.005 0.000 {built-in method _abc._abc_instancecheck}
  181. 6486 0.004 0.000 0.004 0.000 {built-in method _collections._count_elements}
  182. 103804 0.014 0.000 0.014 0.000 {built-in method _operator.index}
  183. 11442 0.001 0.000 0.001 0.000 {built-in method builtins.abs}
  184. 10364 0.006 0.000 0.015 0.000 {built-in method builtins.all}
  185. 24036 0.014 0.000 0.029 0.000 {built-in method builtins.any}
  186. 1 0.000 0.000 46.441 46.441 {built-in method builtins.exec}
  187. 589148 0.124 0.000 0.124 0.000 {built-in method builtins.getattr}
  188. 110 0.000 0.000 0.000 0.000 {built-in method builtins.hasattr}
  189. 393959 0.106 0.000 0.106 0.000 {built-in method builtins.hash}
  190. 272788 0.060 0.000 0.067 0.000 {built-in method builtins.isinstance}
  191. 4 0.000 0.000 0.000 0.000 {built-in method builtins.issubclass}
  192. 24036 0.016 0.000 0.016 0.000 {built-in method builtins.iter}
  193. 4438828 0.325 0.000 0.325 0.000 {built-in method builtins.len}
  194. 83020 0.040 0.000 0.040 0.000 {built-in method builtins.max}
  195. 1446 0.001 0.000 0.001 0.000 {built-in method builtins.min}
  196. 4 0.000 0.000 0.001 0.000 {built-in method builtins.print}
  197. 5722 0.003 0.000 0.003 0.000 {built-in method builtins.sorted}
  198. 38544 0.087 0.000 0.171 0.000 {built-in method builtins.sum}
  199. 6486 0.001 0.000 0.001 0.000 {built-in method math.factorial}
  200. 3270 0.003 0.000 0.003 0.000 {built-in method math.floor}
  201. 14 0.000 0.000 0.000 0.000 {built-in method nt.getpid}
  202. 14 0.000 0.000 0.000 0.000 {built-in method numpy.arange}
  203. 947122 1.161 0.000 1.185 0.000 {built-in method numpy.array}
  204. 412 0.000 0.000 0.000 0.000 {built-in method numpy.can_cast}
  205. 20700 0.061 0.000 0.061 0.000 {built-in method numpy.concatenate}
  206. 84 0.000 0.000 0.000 0.000 {built-in method numpy.empty_like}
  207. 31150 0.067 0.000 0.067 0.000 {built-in method numpy.empty}
  208. 24036 0.040 0.000 0.040 0.000 {built-in method numpy.frompyfunc}
  209. 6486 0.017 0.000 0.017 0.000 {built-in method numpy.where}
  210. 41432 0.092 0.000 0.092 0.000 {built-in method numpy.zeros}
  211. 42 0.005 0.000 0.005 0.000 {built-in method scipy.sparse._sparsetools.coo_tocsr}
  212. 28 0.001 0.000 0.001 0.000 {built-in method scipy.sparse._sparsetools.csr_has_canonical_format}
  213. 12 0.003 0.000 0.003 0.000 {built-in method scipy.sparse._sparsetools.csr_plus_csr}
  214. 12 0.000 0.000 0.000 0.000 {built-in method scipy.sparse._sparsetools.expandptr}
  215. 6 0.001 0.000 0.001 0.000 {built-in method scipy.sparse._sparsetools.get_csr_submatrix}
  216. 2 0.000 0.000 0.000 0.000 {built-in method time.time}
  217. 17 0.000 0.000 0.000 0.000 {method 'acquire' of '_thread.lock' objects}
  218. 553400 0.611 0.000 1.872 0.000 {method 'any' of 'numpy.generic' objects}
  219. 17 0.000 0.000 0.000 0.000 {method 'append' of 'collections.deque' objects}
  220. 17342 0.005 0.000 0.005 0.000 {method 'append' of 'list' objects}
  221. 116 0.000 0.000 0.000 0.000 {method 'astype' of 'numpy.ndarray' objects}
  222. 12 0.000 0.000 0.000 0.000 {method 'copy' of 'numpy.ndarray' objects}
  223. 20700 0.063 0.000 0.063 0.000 {method 'cumsum' of 'numpy.ndarray' objects}
  224. 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
  225. 8 0.000 0.000 0.000 0.000 {method 'flatten' of 'numpy.ndarray' objects}
  226. 10406 0.006 0.000 0.006 0.000 {method 'get' of 'dict' objects}
  227. 12 0.000 0.000 0.000 0.000 {method 'indices' of 'slice' objects}
  228. 564524 0.085 0.000 0.085 0.000 {method 'items' of 'dict' objects}
  229. 24036 0.004 0.000 0.004 0.000 {method 'join' of 'str' objects}
  230. 2 0.000 0.000 0.000 0.000 {method 'keys' of 'dict' objects}
  231. 59430 0.034 0.000 0.617 0.000 {method 'max' of 'numpy.ndarray' objects}
  232. 59430 0.025 0.000 0.493 0.000 {method 'min' of 'numpy.ndarray' objects}
  233. 51874 0.036 0.000 0.036 0.000 {method 'newbyteorder' of 'numpy.dtype' objects}
  234. 20700 0.189 0.000 0.189 0.000 {method 'nonzero' of 'numpy.ndarray' objects}
  235. 41414 0.029 0.000 0.029 0.000 {method 'ravel' of 'numpy.ndarray' objects}
  236. 695402 2.206 0.000 2.206 0.000 {method 'reduce' of 'numpy.ufunc' objects}
  237. 8 0.000 0.000 0.000 0.000 {method 'reshape' of 'numpy.ndarray' objects}
  238. 82 0.000 0.000 0.000 0.000 {method 'rpartition' of 'str' objects}
  239. 22 0.000 0.000 0.000 0.000 {method 'sort' of 'list' objects}
  240. 8 0.000 0.000 0.000 0.000 {method 'sort' of 'numpy.ndarray' objects}
  241. 12018 0.008 0.000 0.069 0.000 {method 'sum' of 'numpy.ndarray' objects}
  242. 6486 0.001 0.000 0.001 0.000 {method 'values' of 'dict' objects}