config_hard_100.yaml 1.5 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556
  1. general:
  2. experiment_tag: 'lstm_drqn_'
  3. env_id: 'twcc_hard_level15_gamesize100_step75_seed9_train'
  4. run_test: True
  5. valid_env_id: 'twcc_hard_level15_gamesize10_step75_seed9_validation'
  6. test_env_id: []
  7. # test_env_id: ['twcc_easy_level10_gamesize10_step50_seed0_test']
  8. discount_gamma: 0.5
  9. random_seed: 42
  10. observation_cache_capacity: 1 # concat window of history observation, 1 means no history observations available
  11. experiments_dir: 'experiments/summary_env_hard_100'
  12. use_cuda: True # disable this when running on machine without cuda
  13. provide_prev_action: True
  14. # replay memory
  15. history_size: 8
  16. update_from: 4
  17. replay_memory_capacity: 500000
  18. replay_memory_priority_fraction: 0.25 # 0.0 to disable this
  19. update_per_k_game_steps: 4
  20. replay_batch_size: 32
  21. # epsilon greedy
  22. epsilon_anneal_epochs: 2000 # -1 if not annealing
  23. epsilon_anneal_from: 1.0
  24. epsilon_anneal_to: 0.2
  25. # counting reward
  26. revisit_counting: True
  27. revisit_counting_lambda_anneal_from: 1.0
  28. revisit_counting_lambda_anneal_epochs: -1 # -1 if not annealing
  29. revisit_counting_lambda_anneal_to: 0.0
  30. training:
  31. scheduling:
  32. batch_size: 10
  33. test_batch_size: 10
  34. epoch: 6000
  35. model_checkpoint_path: 'saved_models/summary_model_dqrn_hard_100.pt'
  36. logging_frequency: 20
  37. optimizer:
  38. step_rule: 'adam' # adam, sgd
  39. learning_rate: 0.001
  40. clip_grad_norm: 5
  41. model:
  42. lstm_dqn:
  43. embedding_size: 20
  44. encoder_rnn_hidden_size: [100]
  45. action_scorer_hidden_dim: 64
  46. dropout_between_rnn_layers: 0.
  47. bootstrap:
  48. filter_sentence: False
  49. threshold: 0.3