config_easy_100.yaml 1.7 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061
  1. general:
  2. experiment_tag: 'lstm_drqn_'
  3. env_id: 'twcc_easy_level15_gamesize100_step50_seed9_train'
  4. run_test: True
  5. valid_env_id: 'twcc_easy_level15_gamesize10_step50_seed9_validation'
  6. test_env_id: []
  7. # test_env_id: ['twcc_easy_level10_gamesize10_step50_seed0_test']
  8. discount_gamma: 0.5
  9. random_seed: 42
  10. observation_cache_capacity: 1 # concat window of history observation, 1 means no history observations available
  11. experiments_dir: 'experiments/summary_env_easy_100'
  12. use_cuda: True # disable this when running on machine without cuda
  13. provide_prev_action: True
  14. # replay memory
  15. history_size: 8
  16. update_from: 4
  17. replay_memory_capacity: 500000
  18. replay_memory_priority_fraction: 0.25 # 0.0 to disable this
  19. update_per_k_game_steps: 4
  20. replay_batch_size: 32
  21. # epsilon greedy
  22. epsilon_anneal_epochs: 2000 # -1 if not annealing
  23. epsilon_anneal_from: 1.0
  24. epsilon_anneal_to: 0.2
  25. # recombinant episodes
  26. recombine_eps_from: 500 # -1 if not annealing
  27. recombine_anneal_from: 0.1
  28. recombine_anneal_to: 0.8
  29. # counting reward
  30. revisit_counting: True
  31. revisit_counting_lambda_anneal_from: 1.0
  32. revisit_counting_lambda_anneal_epochs: -1 # -1 if not annealing
  33. revisit_counting_lambda_anneal_to: 0.0
  34. training:
  35. scheduling:
  36. batch_size: 10
  37. test_batch_size: 10
  38. epoch: 6000
  39. model_checkpoint_path: 'saved_models/summary_model_dqrn_easy_100.pt'
  40. logging_frequency: 20
  41. optimizer:
  42. step_rule: 'adam' # adam, sgd
  43. learning_rate: 0.001
  44. clip_grad_norm: 5
  45. model:
  46. lstm_dqn:
  47. embedding_size: 20
  48. encoder_rnn_hidden_size: [100]
  49. action_scorer_hidden_dim: 64
  50. dropout_between_rnn_layers: 0.
  51. bootstrap:
  52. filter_sentence: False
  53. threshold: 0.3