123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143 |
- import numpy as np
- from matplotlib import pyplot as plt
- import pandas as pd
- from pandas import Series
- import random
- get_bin = lambda x, n: format(x, 'b').zfill(n)
- x=list(range(10000))
- x1=list(range(6))
- yans=list(range(10000))
- yans1=list(range(10000))
- res = []
- res1 = []
- mean_error_distance = 0
- mean_relative_error_distance = 0
- normalized_error_distance = 0
- normailzed_relative_error_distance = 0
- acceptance_prob = 0
- for c in range(10000):
- res.append(random.randint(1, 4294967295))
- for d in range(10000):
- res1.append(random.randint(1, 4294967295))
- for g in range (6):
- mean_error_distance_1 = 0
- mean_relative_error_distance_1 = 0
- normalized_error_distance_1 = 0
- normailzed_relative_error_distance_1 = 0
- prob = 0
- for f in range (10000):
- a=res[f]
- b=res1[f]
- y=a*b
- abin = get_bin(a,32)
- bbin = get_bin(b,32)
- if abin[0]=='1':
- num=8
- elif bbin[0]=='1':
- num=8
- elif abin[1]=='1':
- num=8
- elif bbin[1]=='1':
- num=8
- elif abin[2]=='1':
- num=7
- elif bbin[2]=='1':
- num=7
- elif abin[3]=='1':
- num=7
- elif bbin[3]=='1':
- num=7
- elif abin[4]=='1':
- num=7
- elif bbin[4]=='1':
- num=7
- elif abin[5]=='1':
- num=7
- elif bbin[5]=='1':
- num=7
- elif abin[6]=='1':
- num=7
- elif bbin[6]=='1':
- num=7
- elif abin[7]=='1':
- num=7
- elif bbin[7]=='1':
- num=7
- elif abin[8]=='1':
- num=7
- elif bbin[8]=='1':
- num=7
- elif abin[9]=='1':
- num=7
- elif bbin[9]=='1':
- num=7
- else:
- num=6
- i=0
- while (abin[i]=='0'):
- i=i+1
- j=0
- while (bbin[j]=='0'):
- j=j+1
- k=i
- l=j
- sum1=32-k-num
- sum2=32-l-num
- if (sum1<0):
- sum1=0
- if (sum2<0):
- sum2=0
- sum3=(sum1+sum2)*-1
- if (k+num>32):
- k = 32-num
- if (l+num>32):
- l = 32-num
- amul=abin[k:k+num]
- bmul=bbin[l:l+num]
- q=int(amul,2)
- w=int(bmul,2)
- e=q*w
- yapp = get_bin(e,64)
- yapp = [int(x) for x in yapp]
- yapp = np.roll(yapp,sum3)
- yapp = ' '.join(str(e) for e in yapp)
- yapp = str.replace(yapp," ","")
- w=int(yapp,2)
- ans=((y-w)/y)*100
- yans[f]=ans
- yans1[f] = (y-w)
- mean_error_distance = (y-w) + mean_error_distance
- mean_relative_error_distance = mean_relative_error_distance + ans
- max1 = max(yans1)
- max2 = max(yans)
- if (ans>1):
- prob = prob + 1
-
- plt.plot(x,yans)
- mean_error_distance = mean_error_distance/10000
- mean_relative_error_distance = mean_relative_error_distance/10000
- normalized_error_distance = mean_error_distance/max1
- normailzed_relative_error_distance = mean_relative_error_distance/max2
- acceptance_prob = prob/10000
- acceptance_prob = 1-acceptance_prob
- print ("*******************************")
- print ("MEAN ERROR DISTANCE : ", mean_error_distance)
- print ("mean_relative_error_distance : ", mean_relative_error_distance)
- print ("normalized_error_distance : ", normalized_error_distance)
- print ("normailzed_relative_error_distance : ", normailzed_relative_error_distance)
- print ("acceptance_probability at 1% : ", acceptance_prob)
- plt.title ('32 BIT MULTIPLIER SCHEME 2')
- plt.xlabel('Random Numbers Generated')
- plt.ylabel('Relative Error(%)')
- plt.show()
|