123456789101112131415161718192021222324252627282930313233343536373839404142 |
- import numpy as np
- import matplotlib.pyplot as plt
- from sklearn.svm import SVC
- def main():
-
- np.random.seed(0)
- x = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]]
- y = [0] * 20 + [1] * 20
-
- clf = SVC(kernel='linear')
- clf.fit(x, y)
-
- w = clf.coef_[0]
- a = -w[0] / w[1]
- xx = np.linspace(-5, 5)
- yy = a * xx - (clf.intercept_[0]) / w[1]
- b = clf.support_vectors_[0]
- yy_down = a * xx + (b[1] - a * b[0])
- b = clf.support_vectors_[-1]
- yy_up = a * xx + (b[1] - a * b[0])
-
-
- plt.plot(xx, yy, 'k-')
- plt.plot(xx, yy_down, 'k--')
- plt.plot(xx, yy_up, 'k--')
-
- plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='red')
-
- plt.scatter(x[:, 0], x[:, 1], c=y, cmap=plt.cm.Paired)
- plt.axis('tight')
- plt.show()
- if __name__ == "__main__":
- main()
|