output.txt 2.2 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162
  1. Total Percent
  2. PoolQC 1453 0.995205
  3. MiscFeature 1406 0.963014
  4. Alley 1369 0.937671
  5. Fence 1179 0.807534
  6. FireplaceQu 690 0.472603
  7. LotFrontage 259 0.177397
  8. GarageCond 81 0.055479
  9. GarageType 81 0.055479
  10. GarageYrBlt 81 0.055479
  11. GarageFinish 81 0.055479
  12. GarageQual 81 0.055479
  13. BsmtExposure 38 0.026027
  14. BsmtFinType2 38 0.026027
  15. BsmtFinType1 37 0.025342
  16. BsmtCond 37 0.025342
  17. BsmtQual 37 0.025342
  18. MasVnrArea 8 0.005479
  19. MasVnrType 8 0.005479
  20. Electrical 1 0.000685
  21. ElasticNetCV(alphas=[0.0001, 0.0005, 0.001, 0.01, 0.1, 1, 10], copy_X=True,
  22. cv=None, eps=0.001, fit_intercept=True,
  23. l1_ratio=[0.01, 0.1, 0.5, 0.9, 0.99], max_iter=5000, n_alphas=100,
  24. n_jobs=1, normalize=False, positive=False, precompute='auto',
  25. random_state=None, selection='cyclic', tol=0.0001, verbose=0)
  26. R2: 0.900928280613796
  27. RMSE: 0.11921419956844193
  28. RMSLE: 0.009197799994941804
  29. Test
  30. R2: 0.8967299504618576
  31. RMSE: 0.11097042747851499
  32. RMSLE: 0.008597196096326625
  33. Accuracy: 0.88 (+/- 0.10)
  34. GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
  35. learning_rate=0.05, loss='huber', max_depth=3,
  36. max_features='sqrt', max_leaf_nodes=None,
  37. min_impurity_decrease=0.0, min_impurity_split=None,
  38. min_samples_leaf=15, min_samples_split=10,
  39. min_weight_fraction_leaf=0.0, n_estimators=3000,
  40. presort='auto', random_state=None, subsample=1.0, verbose=0,
  41. warm_start=False)
  42. R2: 0.961882325124111
  43. RMSE: 0.07588140544292711
  44. RMSLE: 0.00591670124537216
  45. Test
  46. R2: 0.8926997636367985
  47. RMSE: 0.11164479282544255
  48. RMSLE: 0.008680527859539
  49. Accuracy: 0.90 (+/- 0.04)
  50. XGBRegressor(base_score=0.5, colsample_bylevel=1, colsample_bytree=1, gamma=0,
  51. learning_rate=0.05, max_delta_step=0, max_depth=3,
  52. min_child_weight=1, missing=None, n_estimators=3000, nthread=-1,
  53. objective='reg:linear', reg_alpha=0, reg_lambda=1,
  54. scale_pos_weight=1, seed=0, silent=True, subsample=1)
  55. R2: 0.9971902274242356
  56. RMSE: 0.021167142946350206
  57. RMSLE: 0.0016307988766566474
  58. Test
  59. R2: 0.9038938318170437
  60. RMSE: 0.1079454200273511
  61. RMSLE: 0.008339622465234684
  62. Accuracy: 0.89 (+/- 0.03)