1234567891011121314151617181920212223242526272829303132333435363738 |
- ######################################################
- #
- # Fock space Hamiltonian truncation for phi^4 theory in 2 dimensions
- # Authors: Slava Rychkov (slava.rychkov@lpt.ens.fr) and Lorenzo Vitale (lorenzo.vitale@epfl.ch)
- # December 2014
- #
- ######################################################
- This code was tested with Python 2.7.8 and Scipy 0.14.0
- EXAMPLE:
- Create and save to file the potential matrices, for L=6 and Emax=22:
- $ python genMatrix.py 6 22
- Calculate the spectrum for g=1, L=6 and Emax=20:
- $ python phi4eigs.py Emax=22.0_L=6.0.npz 1 20
- Expected output (IL):
- K=1 full basis size = 1733
- K=-1 full basis size = 1717
- K=1 basis size = 929
- K=-1 basis size = 918
- Computing raw eigenvalues for g4 = 1.0
- Raw vacuum energy: -0.18712682052307628
- K=1 Raw spectrum: [1.76304038 2.91903338]
- K=-1 Raw spectrum: [0.77339277 2.93853034 4.20499236]
- Computing renormalized eigenvalues for g0r,g2r,g4r = -0.008405611877365346 -0.031689185510771475 0.9857647792866683
- Adding subleading corrections to k=1 eigenvalues
- Adding subleading corrections to k=-1 eigenvalues
- Renlocal vacuum energy: -0.2394434469441329
- K=1 renlocal spectrum: [1.72954441 2.89643182]
- K=-1 renlocal spectrum: [0.75452984 2.89148377 4.16620949]
- Rensubl vacuum energy: -0.23901143444033499
- K=1 rensubl spectrum: [1.71655883 2.87788919]
- K=-1 rensubl spectrum: [0.75033858 2.86430967 4.13036686]
|