12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061 |
- import numpy as np
- from nltk import FreqDist
- from sklearn.neighbors import KNeighborsClassifier
- from sklearn.model_selection import train_test_split, cross_val_score
- import matplotlib.pyplot as plt
- from datasets import Datasets
- # 特征提取,统计该操作序列中的10个与整个数据最频繁使用的前50个命令以及最不频繁使用的前50个命令计算重合程度
- def get_feature(cmd, fdist):
- max_cmd = set(fdist[0:50])
- min_cmd = set(fdist[-50:])
- feature = []
- for block in cmd:
- f1 = len(set(block))
- fdist = list(FreqDist(block).keys())
- f2 = fdist[0:10]
- f3 = fdist[-10:]
- f2 = len(set(f2) & set(max_cmd))
- f3 = len(set(f3) & set(min_cmd))
- x = [f1, f2, f3]
- feature.append(x)
- return feature
- def main():
- data, y, fdist = Datasets.load_Schonlau('User3')
- # 特征提取
- x = get_feature(data, fdist)
- # 训练数据 120 测试数据后30
- # x_train, y_train = x[0:100], y[0:100]
- # x_test, y_test = x[100:150], y[100:150]
- # print(x_test, y_test)
- x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3)
- # knn训练
- # knn = KNeighborsClassifier()
- # knn.fit(x_train, y_train)
- # # 查看模型分数
- # print(knn.score(x_test, y_test))
- #
- # # 交叉验证 分10组
- # scores = cross_val_score(knn, x, y, cv=10, scoring="accuracy")
- # print(scores.mean())
- # 判断k值
- k_range = range(1, 30)
- k_scores = []
- for k in k_range:
- knn = KNeighborsClassifier(n_neighbors=k)
- scores = cross_val_score(knn, x, y, cv=10, scoring="accuracy")
- k_scores.append(scores.mean())
- plt.plot(k_range, k_scores)
- plt.xlabel("Value of K for KNN")
- plt.ylabel("Cross Validated Accuracy")
- plt.show()
- # 根据图来看 k=3 模型最优 约96%
- if __name__ == "__main__":
- main()
|