output.txt 2.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566
  1. mu = 12.02 and sigma = 0.40
  2. Total Percent
  3. Alley 2719 0.932122
  4. FireplaceQu 1420 0.486802
  5. LotFrontage 486 0.166610
  6. GarageQual 159 0.054508
  7. GarageFinish 159 0.054508
  8. GarageType 157 0.053822
  9. BsmtExposure 82 0.028111
  10. BsmtCond 82 0.028111
  11. BsmtQual 81 0.027768
  12. BsmtFinType2 80 0.027425
  13. BsmtFinType1 79 0.027083
  14. MasVnrType 24 0.008228
  15. MSZoning 4 0.001371
  16. Exterior2nd 1 0.000343
  17. TotalBsmtSF 1 0.000343
  18. KitchenQual 1 0.000343
  19. GarageCars 1 0.000343
  20. SaleType 1 0.000343
  21. Exterior1st 1 0.000343
  22. Electrical 1 0.000343
  23. ElasticNetCV(alphas=[0.0001, 0.0005, 0.001, 0.01, 0.1, 1, 10], copy_X=True,
  24. cv=None, eps=0.001, fit_intercept=True,
  25. l1_ratio=[0.01, 0.1, 0.5, 0.9, 0.99], max_iter=5000, n_alphas=100,
  26. n_jobs=1, normalize=False, positive=False, precompute='auto',
  27. random_state=None, selection='cyclic', tol=0.0001, verbose=0)
  28. R2: 0.9269663261524108
  29. RMSE: 0.10231916286239287
  30. RMSLE: 0.007981658975742276
  31. Test
  32. R2: 0.9199148891263502
  33. RMSE: 0.11295583217844428
  34. RMSLE: 0.008924233330382905
  35. Accuracy: 0.91 (+/- 0.03)
  36. GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
  37. learning_rate=0.05, loss='huber', max_depth=3,
  38. max_features='sqrt', max_leaf_nodes=None,
  39. min_impurity_decrease=0.0, min_impurity_split=None,
  40. min_samples_leaf=15, min_samples_split=10,
  41. min_weight_fraction_leaf=0.0, n_estimators=3000,
  42. presort='auto', random_state=None, subsample=1.0, verbose=0,
  43. warm_start=False)
  44. R2: 0.9677616720254136
  45. RMSE: 0.06869302302815068
  46. RMSLE: 0.0054301298262547665
  47. Test
  48. R2: 0.8737406621935428
  49. RMSE: 0.13290958113943638
  50. RMSLE: 0.010553235755463575
  51. Accuracy: 0.91 (+/- 0.04)
  52. XGBRegressor(base_score=0.5, colsample_bylevel=1, colsample_bytree=1, gamma=0,
  53. learning_rate=0.05, max_delta_step=0, max_depth=3,
  54. min_child_weight=1, missing=None, n_estimators=3000, nthread=-1,
  55. objective='reg:linear', reg_alpha=0, reg_lambda=1,
  56. scale_pos_weight=1, seed=0, silent=True, subsample=1)
  57. R2: 0.9974955668881031
  58. RMSE: 0.01970599907519459
  59. RMSLE: 0.0015195131730173404
  60. Test
  61. R2: 0.8907693101656986
  62. RMSE: 0.13078523430863218
  63. RMSLE: 0.010277983592887913
  64. Accuracy: 0.90 (+/- 0.03)