123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205 |
- """
- 2D plotting funtions
- """
- from mpl_toolkits.mplot3d import Axes3D
- from matplotlib import pyplot as plt
- from matplotlib import cm
- import h5py
- import argparse
- import numpy as np
- from os.path import exists
- import seaborn as sns
- def plot_2d_contour(surf_file, surf_name='train_loss', vmin=0.1, vmax=10, vlevel=0.5, show=False):
- """Plot 2D contour map and 3D surface."""
- f = h5py.File(surf_file, 'r')
- x = np.array(f['xcoordinates'][:])
- y = np.array(f['ycoordinates'][:])
- X, Y = np.meshgrid(x, y)
- if surf_name in f.keys():
- Z = np.array(f[surf_name][:])
- elif surf_name == 'train_err' or surf_name == 'test_err' :
- Z = 100 - np.array(f[surf_name][:])
- else:
- print ('%s is not found in %s' % (surf_name, surf_file))
- print('------------------------------------------------------------------')
- print('plot_2d_contour')
- print('------------------------------------------------------------------')
- print("loading surface file: " + surf_file)
- print('len(xcoordinates): %d len(ycoordinates): %d' % (len(x), len(y)))
- print('max(%s) = %f \t min(%s) = %f' % (surf_name, np.max(Z), surf_name, np.min(Z)))
- print(Z)
- if (len(x) <= 1 or len(y) <= 1):
- print('The length of coordinates is not enough for plotting contours')
- return
-
-
-
- fig = plt.figure()
- CS = plt.contour(X, Y, Z, cmap='summer', levels=np.arange(vmin, vmax, vlevel))
- plt.clabel(CS, inline=1, fontsize=8)
- fig.savefig(surf_file + '_' + surf_name + '_2dcontour' + '.pdf', dpi=300,
- bbox_inches='tight', format='pdf')
- fig = plt.figure()
- print(surf_file + '_' + surf_name + '_2dcontourf' + '.pdf')
- CS = plt.contourf(X, Y, Z, cmap='summer', levels=np.arange(vmin, vmax, vlevel))
- fig.savefig(surf_file + '_' + surf_name + '_2dcontourf' + '.pdf', dpi=300,
- bbox_inches='tight', format='pdf')
-
-
-
- fig = plt.figure()
- sns_plot = sns.heatmap(Z, cmap='viridis', cbar=True, vmin=vmin, vmax=vmax,
- xticklabels=False, yticklabels=False)
- sns_plot.invert_yaxis()
- sns_plot.get_figure().savefig(surf_file + '_' + surf_name + '_2dheat.pdf',
- dpi=300, bbox_inches='tight', format='pdf')
-
-
-
- fig = plt.figure()
- ax = Axes3D(fig)
- surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm, linewidth=0, antialiased=False)
- fig.colorbar(surf, shrink=0.5, aspect=5)
- fig.savefig(surf_file + '_' + surf_name + '_3dsurface.pdf', dpi=300,
- bbox_inches='tight', format='pdf')
- f.close()
- if show: plt.show()
- def plot_trajectory(proj_file, dir_file, show=False):
- """ Plot optimization trajectory on the plane spanned by given directions."""
- assert exists(proj_file), 'Projection file does not exist.'
- f = h5py.File(proj_file, 'r')
- fig = plt.figure()
- plt.plot(f['proj_xcoord'], f['proj_ycoord'], marker='.')
- plt.tick_params('y', labelsize='x-large')
- plt.tick_params('x', labelsize='x-large')
- f.close()
- if exists(dir_file):
- f2 = h5py.File(dir_file,'r')
- if 'explained_variance_ratio_' in f2.keys():
- ratio_x = f2['explained_variance_ratio_'][0]
- ratio_y = f2['explained_variance_ratio_'][1]
- plt.xlabel('1st PC: %.2f %%' % (ratio_x*100), fontsize='xx-large')
- plt.ylabel('2nd PC: %.2f %%' % (ratio_y*100), fontsize='xx-large')
- f2.close()
- fig.savefig(proj_file + '.pdf', dpi=300, bbox_inches='tight', format='pdf')
- if show: plt.show()
- def plot_contour_trajectory(surf_file, dir_file, proj_file, surf_name='loss_vals',
- vmin=0.1, vmax=10, vlevel=0.5, show=False):
- """2D contour + trajectory"""
- assert exists(surf_file) and exists(proj_file) and exists(dir_file)
-
- f = h5py.File(surf_file,'r')
- x = np.array(f['xcoordinates'][:])
- y = np.array(f['ycoordinates'][:])
- X, Y = np.meshgrid(x, y)
- if surf_name in f.keys():
- Z = np.array(f[surf_name][:])
- fig = plt.figure()
- CS1 = plt.contour(X, Y, Z, levels=np.arange(vmin, vmax, vlevel))
- CS2 = plt.contour(X, Y, Z, levels=np.logspace(1, 8, num=8))
-
- pf = h5py.File(proj_file, 'r')
- plt.plot(pf['proj_xcoord'], pf['proj_ycoord'], marker='.')
-
-
-
-
- df = h5py.File(dir_file,'r')
- ratio_x = df['explained_variance_ratio_'][0]
- ratio_y = df['explained_variance_ratio_'][1]
- plt.xlabel('1st PC: %.2f %%' % (ratio_x*100), fontsize='xx-large')
- plt.ylabel('2nd PC: %.2f %%' % (ratio_y*100), fontsize='xx-large')
- df.close()
- plt.clabel(CS1, inline=1, fontsize=6)
- plt.clabel(CS2, inline=1, fontsize=6)
- fig.savefig(proj_file + '_' + surf_name + '_2dcontour_proj.pdf', dpi=300,
- bbox_inches='tight', format='pdf')
- pf.close()
- if show: plt.show()
- def plot_2d_eig_ratio(surf_file, val_1='min_eig', val_2='max_eig', show=False):
- """ Plot the heatmap of eigenvalue ratios, i.e., |min_eig/max_eig| of hessian """
- print('------------------------------------------------------------------')
- print('plot_2d_eig_ratio')
- print('------------------------------------------------------------------')
- print("loading surface file: " + surf_file)
- f = h5py.File(surf_file,'r')
- x = np.array(f['xcoordinates'][:])
- y = np.array(f['ycoordinates'][:])
- X, Y = np.meshgrid(x, y)
- Z1 = np.array(f[val_1][:])
- Z2 = np.array(f[val_2][:])
-
- abs_ratio = np.absolute(np.divide(Z1, Z2))
- print(abs_ratio)
- fig = plt.figure()
- sns_plot = sns.heatmap(abs_ratio, cmap='viridis', vmin=0, vmax=.5, cbar=True,
- xticklabels=False, yticklabels=False)
- sns_plot.invert_yaxis()
- sns_plot.get_figure().savefig(surf_file + '_' + val_1 + '_' + val_2 + '_abs_ratio_heat_sns.pdf',
- dpi=300, bbox_inches='tight', format='pdf')
-
- ratio = np.divide(Z1, Z2)
- print(ratio)
- fig = plt.figure()
- sns_plot = sns.heatmap(ratio, cmap='viridis', cbar=True, xticklabels=False, yticklabels=False)
- sns_plot.invert_yaxis()
- sns_plot.get_figure().savefig(surf_file + '_' + val_1 + '_' + val_2 + '_ratio_heat_sns.pdf',
- dpi=300, bbox_inches='tight', format='pdf')
- f.close()
- if show: plt.show()
- if __name__ == '__main__':
- parser = argparse.ArgumentParser(description='Plot 2D loss surface')
- parser.add_argument('--surf_file', '-f', default='', help='The h5 file that contains surface values')
- parser.add_argument('--dir_file', default='', help='The h5 file that contains directions')
- parser.add_argument('--proj_file', default='', help='The h5 file that contains the projected trajectories')
- parser.add_argument('--surf_name', default='train_loss', help='The type of surface to plot')
- parser.add_argument('--vmax', default=10, type=float, help='Maximum value to map')
- parser.add_argument('--vmin', default=0.1, type=float, help='Miminum value to map')
- parser.add_argument('--vlevel', default=0.5, type=float, help='plot contours every vlevel')
- parser.add_argument('--zlim', default=10, type=float, help='Maximum loss value to show')
- parser.add_argument('--show', action='store_true', default=False, help='show plots')
- args = parser.parse_args()
- if exists(args.surf_file) and exists(args.proj_file) and exists(args.dir_file):
- plot_contour_trajectory(args.surf_file, args.dir_file, args.proj_file,
- args.surf_name, args.vmin, args.vmax, args.vlevel, args.show)
- elif exists(args.proj_file) and exists(args.dir_file):
- plot_trajectory(args.proj_file, args.dir_file, args.show)
- elif exists(args.surf_file):
- plot_2d_contour(args.surf_file, args.surf_name, args.vmin, args.vmax, args.vlevel, args.show)
|