123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081 |
- # Licensed to the Apache Software Foundation (ASF) under one
- # or more contributor license agreements. See the NOTICE file
- # distributed with this work for additional information
- # regarding copyright ownership. The ASF licenses this file
- # to you under the Apache License, Version 2.0 (the
- # "License"); you may not use this file except in compliance
- # with the License. You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
- # KIND, either express or implied. See the License for the
- # specific language governing permissions and limitations
- # under the License.
- import pandas as pd
- from sqlalchemy import DateTime
- from superset import db
- from superset.models.slice import Slice
- from superset.utils import core as utils
- from .helpers import config, get_example_data, get_slice_json, merge_slice, TBL
- def load_random_time_series_data(
- only_metadata: bool = False, force: bool = False
- ) -> None:
- """Loading random time series data from a zip file in the repo"""
- tbl_name = "random_time_series"
- database = utils.get_example_database()
- table_exists = database.has_table_by_name(tbl_name)
- if not only_metadata and (not table_exists or force):
- data = get_example_data("random_time_series.json.gz")
- pdf = pd.read_json(data)
- pdf.ds = pd.to_datetime(pdf.ds, unit="s")
- pdf.to_sql(
- tbl_name,
- database.get_sqla_engine(),
- if_exists="replace",
- chunksize=500,
- dtype={"ds": DateTime},
- index=False,
- )
- print("Done loading table!")
- print("-" * 80)
- print(f"Creating table [{tbl_name}] reference")
- obj = db.session.query(TBL).filter_by(table_name=tbl_name).first()
- if not obj:
- obj = TBL(table_name=tbl_name)
- obj.main_dttm_col = "ds"
- obj.database = database
- db.session.merge(obj)
- db.session.commit()
- obj.fetch_metadata()
- tbl = obj
- slice_data = {
- "granularity_sqla": "day",
- "row_limit": config["ROW_LIMIT"],
- "since": "2019-01-01",
- "until": "2019-02-01",
- "metric": "count",
- "viz_type": "cal_heatmap",
- "domain_granularity": "month",
- "subdomain_granularity": "day",
- }
- print("Creating a slice")
- slc = Slice(
- slice_name="Calendar Heatmap",
- viz_type="cal_heatmap",
- datasource_type="table",
- datasource_id=tbl.id,
- params=get_slice_json(slice_data),
- )
- merge_slice(slc)
|