123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412 |
- import math
- from functools import reduce
- pi=math.pi
- _mabs=abs
- def abs(a):
- if type(a) is pol:
- a0,c=a.separate()
- if c:
- return 1e20
- else:
- return _mabs(a0)
- return _mabs(a)
- def normint(n,m):
- """coefficient of int^m x^n dx"""
- c=1
- for i in range(m):
- c*=n+i+1
- return c
- def normder(n,m):
- """coefficient of d^m / dx^m x^n"""
- c=1
- for i in range(m):
- c*=n-i
- return c
- def mkpol(r):
- return map(pol,r.split(','))
- def pinv(c):
- a0,p=c.separate(); p/=a0
- lst=[1/a0]
- for n in range(1,c.order+1):
- lst.append(-lst[-1])
- return phorner(lst,p)
- def phorner(lst,p):
- out=lst.pop()
- for i in reversed(lst):
- out=out*p+i
- return out
- class mydict(dict):
- """ Dictionary for evaluation"""
- def __getitem__(self,k):
- if not k in self:
- return pol(k)
- else:
- return dict.__getitem__(self,k)
- class pol(dict):
- """ Class for multivariate polinomials
- >>> from pol import *
- >>> print pol('x**3+z-5-x**2')
- - 5.0 + z - 1.0*x**2 + x**3
- >>> x=pol('x')
- >>> y=pol('y')
- >>> c=pol(pi)
- >>> p=c+pi*x+y**2
- >>> print p
- 3.14159265359 + 3.14159265359*x + y**2
- >>> p2=pol(p)
- >>> print p(x=p2,y=p)
- 22.8808014558 + 29.6088132033*x + 9.86960440109*x**2 + 9.42477796077*y**2 + 6.28318530718*y**2*x + y**4
- >>> pol.out='table'
- >>> print p(x=p2,y=p)
- o y x
- 22.8808014558 0 0 0
- 29.6088132033 1 0 1
- 9.86960440109 2 0 2
- 9.42477796077 2 2 0
- 6.28318530718 3 2 1
- 1.0 4 4 0
- >>> pol.out='pretty'
- >>> print pol('1j*x')
- 1j*x
- """
- out='pretty'
- def __init__(self,val=None,order=None,eps=1E-18,loc={},m='eval'):
- self.vars=[]
- self.order=10
- self.eps=eps
- if val!=None:
- if isinstance(val,self.__class__):
- self.update(val)
- self.vars=val.vars[:]
- self.order=val.order
- self.eps=val.eps
- elif isinstance(val,str):
- if m=='eval':
- c=compile(val,'eval','eval')
- l=dict( (i,pol(i,m='name')) for i in c.co_names if i not in globals())
- l.update(loc)
- pol.__init__(self,eval(c,globals(),l))
- elif m=='name':
- self.vars=[val]
- self[(1,)]=1.
- else:
- self.vars=[]
- self[()]=val
- if order is not None:
- self.order=order
- def zero(self):
- """Extract zero order
- """
- return self.get((0,)*len(self.vars),0.)
- def linear(self):
- a=[1]+[0]*(len(self.vars)-1)
- out=[]
- for i in self.vars:
- out.append( self.get(tuple(a),0) )
- a.insert(0,a.pop())
- return out
- def getlind(self,v):
- ind=[0]*len(self.vars)
- ind[ self.vars.index(v)]=1
- return tuple(ind)
- def getlcoef(self,v):
- return self.get(self.getlind(v),0.)
- def setlcoef(self,v,val):
- self[self.getlind(v)]=val
- def separate(self):
- """Return a copy in couple of zero and high order
- """
- c=self.__class__(self)
- a0=c.pop((0,)*len(c.vars),0.)
- return a0,c
- def truncate(self,order=None,eps=None):
- """Truncate to the order indicate in pol.order and
- damp the elements smaller than self.eps"""
- if not order: order=self.order
- if not eps: eps=self.eps
- for k in list(self.keys()):
- if sum(k)>order or abs(self[k])<eps:
- del self[k]
- return self
- def const(self,vars=None):
- """Extract terms that do not depends on vars
- >>> from pol import *
- >>> print pol('x**3+y+l').const()
- 0.0
- >>> print pol('x**3+y+l').const('yl')
- x**3
- """
- if not vars:
- return self.get((0,)*len(self.vars),0.)
- else:
- c=self.__class__(self)
- for exp in self:
- expd=dict(zip(self.vars,exp))
- if sum(expd.get(j,0) for j in vars) >0 :
- del c[exp]
- return c
- def dropneg(self):
- """ Delete terms with negative exponent"""
- for k in self.keys():
- for j in k:
- if j<0:
- del self[k]
- break
- return self
- def addcoef(self,other):
- """Add a number to pol"""
- new=self.__class__(self)
- i=(0,)*len(new.vars)
- new[i]=new.get(i,0.)+other
- return new.truncate()
- def mulcoef(self,other):
- """Mul coef to pol"""
- new=self.__class__(self)
- for i in new:
- new[i]*=other
- return new.truncate()
- def reorder(self,vars):
- new=self.__class__(order=self.order)
- new.vars=vars
- for exp in self:
- expd=dict(zip(self.vars,exp))
- newexp=tuple([expd.get(j,0) for j in new.vars])
- new[newexp]=self[exp]
- return new
- def addpol(self,other):
- """Add pol to pol """
- new=self.__class__(order=min(self.order,other.order))
- new.vars=list(set(other.vars+self.vars))
- for exp in self:
- expd=dict(zip(self.vars,exp))
- newexp=tuple([expd.get(j,0) for j in new.vars])
- new[newexp]=new.get(newexp,0.)+self[exp]
- for exp in other:
- expd=dict(zip(other.vars,exp))
- newexp=tuple([expd.get(j,0) for j in new.vars])
- new[newexp]=new.get(newexp,0.)+other[exp]
- return new.truncate()
- def mulpol(self,other):
- """Mul pol to pol """
- if other.vars==self.vars:
- return self.fmulpol(other)
- else:
- new=pol(order=min(self.order,other.order))
- new.vars=list(set(other.vars+self.vars))
- for i in self:
- for j in other:
- c=self[i]*other[j]
- expi=dict(zip(self.vars,i))
- expj=dict(zip(other.vars,j))
- newexp=tuple([expi.get(k,0)+expj.get(k,0) for k in new.vars])
- new[newexp]=new.get(newexp,0.)+c
- return new.truncate()
- def fmulpol(self,other):
- """fast mul pol to pol """
- new=self.__class__(order=min(self.order,other.order))
- new.vars=self.vars[:]
- for i in self:
- for j in other:
- c=self[i]*other[j]
- newexp=tuple([l+m for l,m in zip(i,j)])
- new[newexp]=new.get(newexp,0.)+c
- return new.truncate()
- def divterm(self,other):
- """Extract a term from a pol EXPERIMENTAL:
- >>> from pol import *
- >>> r=pol('x**3+z-5').divterm('x**3')
- >>> print r
- 1.0
- """
- other=pol(other)
- new=pol(order=min(self.order,other.order))
- other=pol(other)
- new.vars=list(set(other.vars+self.vars))
- for i in self:
- for j in other:
- c=self[i]*other[j]
- expi=dict(zip(self.vars,i))
- expj=dict(zip(other.vars,j))
- newexp=tuple([expi.get(k,0)-expj.get(k,0) for k in new.vars])
- new[newexp]=new.get(newexp,0.)+c
- return new.truncate().dropneg()
- def __pow__(self,n):
- new=self.__class__(self)
- if n==0:
- return 1
- elif n <0:
- return pinv(self)**n
- else:
- for i in range(n-1):
- new*=self
- return new
- def __add__(self,other):
- """Addition
- >>> from pol import *
- >>> x=pol('x')
- >>> 1-x+x
- 1.0
- """
- if isinstance(other,self.__class__):
- return self.addpol(other)
- else:
- return self.addcoef(other)
- def __radd__(self,other):
- return self.addcoef(other)
- def __mul__(self,other):
- """Addition
- >>> from pol import *
- >>> x=pol('x')
- >>> (1+1.0*x)/-(-x-1)
- 1.0
- """
- if isinstance(other,self.__class__):
- return self.mulpol(other)
- else:
- return self.mulcoef(other)
- def __rmul__(self,other):
- return self.mulcoef(other)
- def __sub__(self,other):
- if isinstance(other,pol):
- return self.addpol(-other)
- else:
- return self.addcoef(-other)
- def __rsub__(self,other):
- return (-self).addcoef(other)
- def __truediv__(self,other):
- if isinstance(other,pol):
- return self.mulpol(pinv(other))
- else:
- return self.mulcoef(1/other)
- def __rtruediv__(self,other):
- return pinv(self).mulcoef(other)
- def __neg__(self):
- return self.mulcoef(-1)
- def __pos__(self):
- return self
- def eval(self,*args,**loc):
- if len(args)>0:
- loc.update(args[0])
- for i in self.vars:
- loc.setdefault(i,pol(i))
- loc=mydict(loc)
- return eval(self.pretty(),{},loc)
- __call__=eval
- def _pexp(self,i):
- out=[]
- for j in range(len(i)):
- if i[j]==1:
- out.append( '%s' % self.vars[j] )
- elif i[j]!=0.:
- out.append( '%s**%d' %(self.vars[j],i[j]) )
- return '*'.join(out)
- def _pcoeff(self,c,i):
- if isinstance(c,complex):
- if abs(c.imag)<self.eps:
- return self._pcoeff(c.real,i)
- else:
- c='+ '+str(c)
- elif isinstance(c,float):
- sign=c<0 and '-' or '+'
- if abs(c-1.0)<self.eps and i:
- c='%s %s' % (sign,i)
- i=''
- else:
- c='%s %s' % (sign,abs(c))
- else:
- c='+ (%s)' % c
- if i:
- return '%s*%s' % (c,i)
- else:
- return c
- def pretty(self):
- lst=sorted([ (sum(i),i,c) for i,c in self.items()])
- m=[]
- for o,i,c in lst:
- i=self._pexp(i)
- c=self._pcoeff(c,i)
- m.append( c )
- if m:
- m=' '.join(m)
- if m.startswith('+ '):
- return ' '+m[2:]
- else:
- return m
- else:
- return '0'
- def table(self):
- fvar=lambda x,y:'%3s%3s' %(x,y)
- out=[['',0,0,reduce(fvar,self.vars),' o']]
- lst=sorted([ (sum(i),i) for i in self])
- rmax,cmax=0,0
- for order,exp in lst:
- coef=str(self[exp])
- r=[coef,len(coef),coef.find('.'),reduce(fvar,exp),str(order)]
- rmax=r[1]>rmax and r[1] or rmax
- cmax=r[2]>cmax and r[2] or cmax
- out.append(r)
- nout=[]
- for c,l,p,e,o in out:
- c=('%%-%ds'%(rmax+cmax)) % (' '*(cmax-p)+ c)
- nout.append('%(c)s %(o)2s %(e)s' % locals() )
- return '\n'.join(nout)
- def __repr__(self):
- return getattr(pol,pol.out)(self)
|