12345678910111213141516171819202122232425262728293031323334 |
- from sklearn.neural_network import MLPClassifier
- from datasets import Datasets
- from sklearn.model_selection import cross_val_score
- from sklearn.feature_extraction.text import CountVectorizer
- def main():
-
- x1, y1 = Datasets.load_adfa_normal()
- x2, y2 = Datasets.load_adfa_attack(r"Java_Meterpreter_\d+/UAD-Java-Meterpreter*")
- x = x1 + x2
- y = y1 + y2
-
- cv = CountVectorizer(min_df=1)
- x = cv.fit_transform(x).toarray()
- mlp = MLPClassifier(hidden_layer_sizes=(150, 50), max_iter=10000, alpha=1e-4, solver='sgd', tol=1e-4,
- random_state=1, learning_rate_init=.01)
-
-
-
-
-
-
-
-
- scores = cross_val_score(mlp, x, y, cv=10, scoring="accuracy")
- print(scores.mean())
- if __name__ == "__main__":
- main()
|