import networkx as nx import matplotlib.pyplot as plt import Queue as Q def getPriorityQueue(G, v): q = Q.PriorityQueue() for node in G[v]: q.put(Ordered_Node(float(heuristics[node])+float(G[node][v]['length']),node)) return q,len(G[v]) def aStarSearchUtil(G, v, visited, final_path, dest, goal): if goal == 1: return goal visited[v] = True final_path.append(v) if v == dest: goal = 1 else: pq_list = [] pq,size = getPriorityQueue(G, v) for i in range(size): pq_list.append(pq.get().description) for i in pq_list: if goal != 1: #print "current city:", i if visited[i] == False : goal = aStarSearchUtil(G, i, visited, final_path, dest, goal) return goal def aStarSearch(G, source, dest, heuristics, pos): visited = {} for node in G.nodes(): visited[node] = False final_path = [] goal = aStarSearchUtil(G, source, visited, final_path, dest, 0) prev = -1 for var in final_path: if prev != -1: curr = var nx.draw_networkx_edges(G, pos, edgelist = [(prev,curr)], width = 2.5, alpha = 0.8, edge_color = 'black') prev = curr else: prev = var return class Ordered_Node(object): def __init__(self, priority, description): self.priority = priority self.description = description return def __cmp__(self, other): return cmp(self.priority, other.priority) def getHeuristics(G): heuristics = {} f = open('heuristics.txt') for i in G.nodes(): node_heuristic_val = f.readline().split() heuristics[node_heuristic_val[0]] = node_heuristic_val[1] return heuristics #takes input from the file and creates a weighted graph def CreateGraph(): G = nx.Graph() f = open('input.txt') n = int(f.readline()) for i in range(n): graph_edge_list = f.readline().split() G.add_edge(graph_edge_list[0], graph_edge_list[1], length = graph_edge_list[2]) source, dest= f.read().splitlines() return G, source, dest def DrawPath(G, source, dest): pos = nx.spring_layout(G) val_map = {} val_map[source] = 'green' val_map[dest] = 'red' values = [val_map.get(node, 'blue') for node in G.nodes()] nx.draw(G, pos, with_labels = True, node_color = values, edge_color = 'b' ,width = 1, alpha = 0.7) #with_labels=true is to show the node number in the output graph edge_labels = dict([((u, v,), d['length']) for u, v, d in G.edges(data = True)]) nx.draw_networkx_edge_labels(G, pos, edge_labels = edge_labels, label_pos = 0.5, font_size = 11) #prints weight on all the edges return pos #main function if __name__ == "__main__": G, source,dest = CreateGraph() heuristics = getHeuristics(G) pos = DrawPath(G, source, dest) aStarSearch(G, source, dest, heuristics, pos) plt.show()