from datasets import Datasets from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_val_score def main(): # 加载MNIST数据 train_data, valid_data, test_data = Datasets.load_mnist() x_train, y_train = train_data x_test, y_test = test_data # 逻辑回归训练并预测 lr = LogisticRegression(solver='lbfgs', max_iter=2000) lr.fit(x_train, y_train) print(lr.score(x_test, y_test)) scores = cross_val_score(lr, x_test, y_test, cv=10, scoring="accuracy") print(scores.mean()) if __name__ == "__main__": main()