from sklearn.naive_bayes import GaussianNB from sklearn.model_selection import cross_val_score, train_test_split from sklearn.feature_extraction.text import CountVectorizer from datasets import Datasets import numpy as np # 数据预处理 向量化 以1-gram def to_voc(webshell, wordpress): webshell_voc = CountVectorizer(ngram_range=(1, 1), decode_error="ignore", token_pattern=r'\b\w+\b', min_df=1) x1 = webshell_voc.fit_transform(webshell).toarray() y1 = [1] * len(x1) wordpress_voc = CountVectorizer(ngram_range=(1, 1), decode_error="ignore", token_pattern=r'\b\w+\b', min_df=1, vocabulary=webshell_voc.vocabulary_) x2 = wordpress_voc.fit_transform(wordpress).toarray() y2 = [0] * len(x2) x = np.concatenate((x1, x2)) y = np.concatenate((y1, y2)) return x, y def main(): webshell, wordpress = Datasets.load_php_webshell() x, y = to_voc(webshell, wordpress) x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3) gnb = GaussianNB() gnb.fit(x_train, y_train) print(gnb.score(x_test, y_test)) # 0.8723404255319149 scores = cross_val_score(gnb, x, y, cv=3, scoring="accuracy") print(scores.mean()) # 0.8068124685771746 if __name__ == "__main__": main()