#! /usr/bin/env python import subprocess, re, os, time, random #from harmonic_fit import comp_k_analytic import sys import csv import numpy as np import matplotlib.pyplot as plt import math #from mpl_toolkits.mplot3d import axes3d from scipy.interpolate import interp1d, CubicSpline plt.rcParams['font.family'] = 'sans-serif' plt.rcParams['font.family'] = 'Times New Roman' plt.rcParams['axes.edgecolor']='#333F4B' plt.rcParams['axes.linewidth']=0.8 plt.rcParams['xtick.color']='#333F4B' plt.rcParams['ytick.color']='#333F4B' plt.rcParams["axes.prop_cycle"] # Read CSV csvFileName = sys.argv[1] scan_var = csvFileName.split('.')[0] pltFileName = scan_var + '.png' csvData = [] with open(csvFileName, 'r') as csvFile: csvReader = csv.reader(csvFile, delimiter = ' ') for csvRow in csvReader: csvData.append(csvRow) # Get X, Y and store in np array csvData = np.array(csvData) csvData = csvData.astype(np.float) X, Y = csvData[:,0], csvData[:,1] au_to_kJpmol = 2625.5 # convert kJpmol to au Y = np.array([y/au_to_kJpmol for y in Y]) def comp_k_analytic(X,Y): """ Compute the analytic force constant given X, and V(X) """ N = X.size eq = 0 f2 = CubicSpline(X,Y) k_analytic = f2(X, 2)[0] return k_analytic, f2 def convert_k_to_cminv_rotor(k): """ Convert force constant in Hartree/Radian^2 to cm-1 this is for h2 """ I = 1948.37443393238771437461228584 nu = 1/(2*np.pi)*math.sqrt(k/I)*(1/(137*5.29*10**-9)) return nu #k_numeric = comp_k_numeric(X, Y) k_analytic, f2 = comp_k_analytic(X, Y) nu_analytic = convert_k_to_cminv_rotor(k_analytic) zpve_analytic = nu_analytic/2 print (scan_var, "Analytic", k_analytic, nu_analytic, zpve_analytic) #k_numeric = comp_k_numeric(X, Y) #k_analytic, f2 = comp_k_analytic(X, Y) #print ("Force constants for ", scan_var) #print ("Analytic_derivative ==", k_analytic, "Hartree/Ang^2") #print ("Numeric_derivative ==", k_numeric, "Hartree/Ang^2") plt.plot(X, Y, 'bo') plt.plot(X, f2(X), 'b-') plt.plot(X, f2(X, 1), 'rx--') plt.plot(X, f2(X, 2), 'co') plt.legend(['Points', 'Cubic Spline', r'dV/d${\phi}$', r"d2V/d${\phi}^{2}$"], fontsize = 12) plt.xlabel(r"$\phi$", fontsize = 16) plt.ylabel("E(a.u) and higher derivs", fontsize = 16) plt.savefig(pltFileName)