###################################################### # # Fock space Hamiltonian truncation for phi^4 theory in 2 dimensions # Authors: Slava Rychkov (slava.rychkov@lpt.ens.fr) and Lorenzo Vitale (lorenzo.vitale@epfl.ch) # December 2014 # ###################################################### This code was tested with Python 2.7.8 and Scipy 0.14.0 EXAMPLE: Create and save to file the potential matrices, for L=6 and Emax=22: $ python genMatrix.py 6 22 Calculate the spectrum for g=1, L=6 and Emax=20: $ python phi4eigs.py Emax=22.0_L=6.0.npz 1 20 Expected output (IL): K=1 full basis size = 1733 K=-1 full basis size = 1717 K=1 basis size = 929 K=-1 basis size = 918 Computing raw eigenvalues for g4 = 1.0 Raw vacuum energy: -0.18712682052307628 K=1 Raw spectrum: [1.76304038 2.91903338] K=-1 Raw spectrum: [0.77339277 2.93853034 4.20499236] Computing renormalized eigenvalues for g0r,g2r,g4r = -0.008405611877365346 -0.031689185510771475 0.9857647792866683 Adding subleading corrections to k=1 eigenvalues Adding subleading corrections to k=-1 eigenvalues Renlocal vacuum energy: -0.2394434469441329 K=1 renlocal spectrum: [1.72954441 2.89643182] K=-1 renlocal spectrum: [0.75452984 2.89148377 4.16620949] Rensubl vacuum energy: -0.23901143444033499 K=1 rensubl spectrum: [1.71655883 2.87788919] K=-1 rensubl spectrum: [0.75033858 2.86430967 4.13036686]