import networkx as nx import matplotlib.pyplot as plt #BFS traversal def BFS(G, source, pos): visited = [False]*(len(G.nodes())) queue = [] #a queue for BFS traversal queue.append(source) visited[source] = True while queue: curr_node = queue.pop(0) for i in G[curr_node]: #iterates through all the possible vertices adjacent to the curr_node if visited[i] == False: queue.append(i) visited[i] = True # nx.draw_networkx_edges(G, pos, edgelist = [(curr_node,i)], width = 2.5, alpha = 0.6, edge_color = 'r') return #takes input from the file and creates a weighted graph def CreateGraph(): G = nx.DiGraph() f = open('input.txt') n = int(f.readline()) wtMatrix = [] for i in range(n): list1 = list(map(int, (f.readline()).split())) wtMatrix.append(list1) source = int(f.readline()) #source vertex from where BFS has to start #Adds egdes along with their weights to the graph for i in range(n): for j in range(len(wtMatrix[i])): if wtMatrix[i][j] > 0: G.add_edge(i, j, length = wtMatrix[i][j]) return G, source #draws the graph and displays the weights on the edges def DrawGraph(G): pos = nx.spring_layout(G) nx.draw(G, pos, with_labels = True) #with_labels=true is to show the node number in the output graph edge_labels = dict([((u,v,), d['length']) for u, v, d in G.edges(data = True)]) nx.draw_networkx_edge_labels(G, pos, edge_labels = edge_labels, label_pos = 0.3, font_size = 11) #prints weight on all the edges return pos #main function if __name__== "__main__": G,source = CreateGraph() pos = DrawGraph(G) BFS(G, source, pos) plt.show()