import numpy as np import matplotlib.pyplot as plt from sklearn.svm import SVC def main(): # 随机40个点,符号正态分布 np.random.seed(0) x = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]] y = [0] * 20 + [1] * 20 # 导入svm并训练 clf = SVC(kernel='linear') clf.fit(x, y) # 构造超平面 w = clf.coef_[0] # 得到w a = -w[0] / w[1] # 找到斜率 xx = np.linspace(-5, 5) # -5,5返回均匀间隔的数字 yy = a * xx - (clf.intercept_[0]) / w[1] # clf.intercept_[0]#用来获得截距 b = clf.support_vectors_[0] # 求出过切线的点 yy_down = a * xx + (b[1] - a * b[0]) # 下边界 b = clf.support_vectors_[-1] yy_up = a * xx + (b[1] - a * b[0]) # 上边界 # matplotlib画图 # 超平面 plt.plot(xx, yy, 'k-') plt.plot(xx, yy_down, 'k--') plt.plot(xx, yy_up, 'k--') # 离得最近的向量 plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='red') # 散点 plt.scatter(x[:, 0], x[:, 1], c=y, cmap=plt.cm.Paired) plt.axis('tight') plt.show() if __name__ == "__main__": main()