# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pandas as pd from sqlalchemy import DateTime from superset import db from superset.models.slice import Slice from superset.utils import core as utils from .helpers import config, get_example_data, get_slice_json, merge_slice, TBL def load_random_time_series_data( only_metadata: bool = False, force: bool = False ) -> None: """Loading random time series data from a zip file in the repo""" tbl_name = "random_time_series" database = utils.get_example_database() table_exists = database.has_table_by_name(tbl_name) if not only_metadata and (not table_exists or force): data = get_example_data("random_time_series.json.gz") pdf = pd.read_json(data) pdf.ds = pd.to_datetime(pdf.ds, unit="s") pdf.to_sql( tbl_name, database.get_sqla_engine(), if_exists="replace", chunksize=500, dtype={"ds": DateTime}, index=False, ) print("Done loading table!") print("-" * 80) print(f"Creating table [{tbl_name}] reference") obj = db.session.query(TBL).filter_by(table_name=tbl_name).first() if not obj: obj = TBL(table_name=tbl_name) obj.main_dttm_col = "ds" obj.database = database db.session.merge(obj) db.session.commit() obj.fetch_metadata() tbl = obj slice_data = { "granularity_sqla": "day", "row_limit": config["ROW_LIMIT"], "since": "2019-01-01", "until": "2019-02-01", "metric": "count", "viz_type": "cal_heatmap", "domain_granularity": "month", "subdomain_granularity": "day", } print("Creating a slice") slc = Slice( slice_name="Calendar Heatmap", viz_type="cal_heatmap", datasource_type="table", datasource_id=tbl.id, params=get_slice_json(slice_data), ) merge_slice(slc)