def pseudonymize_6(text: str, tagger: SequenceTagger) -> Tuple[str, str]: """ Perform the pseudonymization action and return both the tagged version (see function "tag_entities") and the pseudonymized version Args: text (str): the input text to pseudonymize tagger (SequenceTagger): the flair model for NER Returns: Tuple[str, str]: the original text with tags, and the pseudonymized text """ with sw.timer("root"): text_sentences = [Sentence(t.strip()) for t in text.split("\n") if t.strip()] with sw.timer("model_annotation"): # inplace function tagger.predict( sentences=text_sentences, mini_batch_size=32, embedding_storage_mode="none", verbose=True, ) return tag_entities(sentences=text_sentences)