from datasets import Datasets from exts import sample import tensorflow as tf import random import numpy as np def main(): # 导入数据 maxlen = 20 x, y, char_idx, file_lines = Datasets.load_us_cities(maxlen=20) # 建立模型 model = tf.keras.Sequential([ tf.keras.layers.Input(shape=[maxlen, len(char_idx)]), tf.keras.layers.LSTM(128, return_sequences=True), tf.keras.layers.Dropout(0.5), tf.keras.layers.LSTM(128), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(len(char_idx), activation="softmax") ]) # 编译模型 model.compile( optimizer="adam", loss="categorical_crossentropy", metrics=["acc"], ) char_indices = dict((c, i) for i, c in enumerate(char_idx)) indices_char = dict((i, c) for i, c in enumerate(char_idx)) for epoch in range(40): rand_index = random.randint(0, len(file_lines) - maxlen - 1) seed = file_lines[rand_index: rand_index + maxlen] # 训练 model.fit(x, y, epochs=1, batch_size=128) for diversity in [0.2, 0.5, 1.0, 1.2]: print("[*]Diversity:", diversity) generated = "" for i in range(30): x_pred = np.zeros((1, maxlen, len(char_idx))) for t, char in enumerate(seed): x_pred[0, t, char_indices[char]] = 1.0 preds = model.predict(x_pred, verbose=0)[0] next_index = sample(preds, diversity) next_char = indices_char[next_index] seed = seed[1:] + next_char generated += next_char print("[*]Generated: ", generated) print() if __name__ == "__main__": main()