# -*- coding: utf-8 -*- # This code is initially based on the Kaggle kernel from Sergei Neviadomski, which can be found in the following link # https://www.kaggle.com/neviadomski/how-to-get-to-top-25-with-simple-model-sklearn/notebook # and the Kaggle kernel from Pedro Marcelino, which can be found in the link below # https://www.kaggle.com/pmarcelino/comprehensive-data-exploration-with-python/notebook # Also, part of the preprocessing has been inspired by this kernel from Serigne # https://www.kaggle.com/serigne/stacked-regressions-top-4-on-leaderboard # Adding needed libraries and reading data import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn import ensemble, tree, linear_model, preprocessing from sklearn.preprocessing import LabelEncoder, RobustScaler from sklearn.linear_model import ElasticNet, Lasso from sklearn.kernel_ridge import KernelRidge from sklearn.base import BaseEstimator, TransformerMixin, RegressorMixin, clone from sklearn.model_selection import KFold, train_test_split, cross_val_score from sklearn.metrics import r2_score, mean_squared_error from sklearn.pipeline import make_pipeline from sklearn.utils import shuffle from scipy import stats from scipy.stats import norm, skew, boxcox from scipy.special import boxcox1p import xgboost as xgb import lightgbm as lgb import warnings warnings.filterwarnings('ignore') # Class AveragingModels # This class is Serigne's simplest way of stacking the prediction models, by # averaging them. We are going to use it as it represents the same that we have # been using in the late submissions, but this applies perfectly to rmsle_cv function. class AveragingModels(BaseEstimator, RegressorMixin, TransformerMixin): def __init__(self, models): self.models = models # we define clones of the original models to fit the data in def fit(self, X, y): self.models_ = [clone(x) for x in self.models] # Train cloned base models for model in self.models_: model.fit(X, y) return self #Now we do the predictions for cloned models and average them def predict(self, X): predictions = np.column_stack([ model.predict(X) for model in self.models_ ]) return np.mean(predictions, axis=1) train = pd.read_csv("../../train.csv") test = pd.read_csv("../../test.csv") #Save the 'Id' column train_ID = train['Id'] test_ID = test['Id'] train.drop('Id', axis=1, inplace=True) test.drop('Id', axis=1, inplace=True) # Visualizing outliers fig, ax = plt.subplots() ax.scatter(x = train['GrLivArea'], y = train['SalePrice']) plt.ylabel('SalePrice', fontsize=13) plt.xlabel('GrLivArea', fontsize=13) #plt.show() # Now the outliers can be deleted train = train.drop(train[(train['GrLivArea'] > 4000) & (train['SalePrice'] < 300000)].index) #Check the graphic again, making sure there are no outliers left fig, ax = plt.subplots() ax.scatter(train['GrLivArea'], train['SalePrice']) plt.ylabel('SalePrice', fontsize=13) plt.xlabel('GrLivArea', fontsize=13) #plt.show() #We use the numpy fuction log1p which applies log(1+x) to all elements of the column train["SalePrice"] = np.log1p(train["SalePrice"]) #Check the new distribution sns.distplot(train['SalePrice'] , fit=norm); # Get the fitted parameters used by the function (mu, sigma) = norm.fit(train['SalePrice']) print( '\n mu = {:.2f} and sigma = {:.2f}\n'.format(mu, sigma)) #Now plot the distribution plt.legend(['Normal dist. ($\mu=$ {:.2f} and $\sigma=$ {:.2f} )'.format(mu, sigma)], loc='best') plt.ylabel('Frequency') plt.title('SalePrice distribution') #Get also the QQ-plot fig = plt.figure() res = stats.probplot(train['SalePrice'], plot=plt) #plt.show() # Splitting to features and labels train_labels = train.pop('SalePrice') # Test set does not even have a 'SalePrice' column, so both sets can be concatenated features = pd.concat([train, test], keys=['train', 'test']) # Checking for missing data, showing every variable with at least one missing value in train set total_missing_data = features.isnull().sum().sort_values(ascending=False) missing_data_percent = (features.isnull().sum()/features.isnull().count()).sort_values(ascending=False) missing_data = pd.concat([total_missing_data, missing_data_percent], axis=1, keys=['Total', 'Percent']) print(missing_data[missing_data['Percent']> 0]) # Deleting non-interesting variables for this case study features.drop(['Utilities'], axis=1, inplace=True) # Imputing missing values and transforming certain columns # Converting OverallCond to str features.OverallCond = features.OverallCond.astype(str) # MSSubClass as str features['MSSubClass'] = features['MSSubClass'].astype(str) # MSZoning NA in pred. filling with most popular values features['MSZoning'] = features['MSZoning'].fillna(features['MSZoning'].mode()[0]) # LotFrontage NA filling with median according to its OverallQual value median = features.groupby('OverallQual')['LotFrontage'].transform('median') features['LotFrontage'] = features['LotFrontage'].fillna(median) # Alley NA in all. NA means no access features['Alley'] = features['Alley'].fillna('NOACCESS') # MasVnrArea NA filling with median according to its OverallQual value median = features.groupby('OverallQual')['MasVnrArea'].transform('median') features['MasVnrArea'] = features['MasVnrArea'].fillna(median) # MasVnrType NA in all. filling with most popular values features['MasVnrType'] = features['MasVnrType'].fillna(features['MasVnrType'].mode()[0]) # BsmtQual, BsmtCond, BsmtExposure, BsmtFinType1, BsmtFinType2 # NA in all. NA means No basement for col in ('BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2'): features[col] = features[col].fillna('NoBSMT') # TotalBsmtSF NA in pred. I suppose NA means 0 features['TotalBsmtSF'] = features['TotalBsmtSF'].fillna(0) # Electrical NA in pred. filling with most popular values features['Electrical'] = features['Electrical'].fillna(features['Electrical'].mode()[0]) # KitchenAbvGr to categorical features['KitchenAbvGr'] = features['KitchenAbvGr'].astype(str) # KitchenQual NA in pred. filling with most popular values features['KitchenQual'] = features['KitchenQual'].fillna(features['KitchenQual'].mode()[0]) # FireplaceQu NA in all. NA means No Fireplace features['FireplaceQu'] = features['FireplaceQu'].fillna('NoFP') # Garage-like features NA in all. NA means No Garage for col in ('GarageType', 'GarageFinish', 'GarageQual', 'GarageYrBlt', 'GarageCond'): features[col] = features[col].fillna('NoGRG') # GarageCars and GarageArea NA in pred. I suppose NA means 0 for col in ('GarageCars', 'GarageArea'): features[col] = features[col].fillna(0.0) # SaleType NA in pred. filling with most popular values features['SaleType'] = features['SaleType'].fillna(features['SaleType'].mode()[0]) # PoolQC NA in all. NA means No Pool features['PoolQC'] = features['PoolQC'].fillna('NoPool') # MiscFeature NA in all. NA means None features['MiscFeature'] = features['MiscFeature'].fillna('None') # Fence NA in all. NA means no fence features['Fence'] = features['Fence'].fillna('NoFence') # BsmtHalfBath and BsmtFullBath NA means 0 for col in ('BsmtHalfBath', 'BsmtFullBath'): features[col] = features[col].fillna(0) # Functional NA means Typ features['Functional'] = features['Functional'].fillna('Typ') # NA in Bsmt SF variables means not that type of basement, 0 square feet for col in ('BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF'): features[col] = features[col].fillna(0) # NA in Exterior1st and Exterior2nd filled with the most common value for col in ('Exterior1st', 'Exterior2nd'): features[col] = features[col].fillna(features[col].mode()[0]) # Year and Month to categorical features['YrSold'] = features['YrSold'].astype(str) features['MoSold'] = features['MoSold'].astype(str) # Adding total sqfootage feature and removing Basement, 1st and 2nd floor features features['TotalSF'] = features['TotalBsmtSF'] + features['1stFlrSF'] + features['2ndFlrSF'] #features.drop(['TotalBsmtSF', '1stFlrSF', '2ndFlrSF'], axis=1, inplace=True) # Box-cox transformation to most skewed features numeric_feats = features.dtypes[features.dtypes != "object"].index # Check the skew of all numerical features skewed_feats = features[numeric_feats].apply(lambda x: skew(x.dropna())).sort_values(ascending=False) print("\nSkew in numerical features:") skewness = pd.DataFrame({'Skew' :skewed_feats}) skewness.head(10) # Box-cox skewness = skewness[abs(skewness) > 0.75] print("There are {} skewed numerical features to Box Cox transform\n".format(skewness.shape[0])) from scipy.special import boxcox1p skewed_features = skewness.index lam = 0.15 for feat in skewed_features: features[feat] = boxcox1p(features[feat], lam) # Label encoding to some categorical features categorical_features = ('FireplaceQu', 'BsmtQual', 'BsmtCond', 'GarageQual', 'GarageCond', 'ExterQual', 'ExterCond','HeatingQC', 'PoolQC', 'KitchenQual', 'BsmtFinType1', 'BsmtFinType2', 'Functional', 'Fence', 'BsmtExposure', 'GarageFinish', 'LandSlope', 'LotShape', 'PavedDrive', 'Street', 'Alley', 'CentralAir', 'MSSubClass', 'OverallCond', 'YrSold', 'MoSold') lbl = LabelEncoder() for col in categorical_features: lbl.fit(list(features[col].values)) features[col] = lbl.transform(list(features[col].values)) # Getting Dummies features = pd.get_dummies(features) # Splitting features train_features = features.loc['train'].select_dtypes(include=[np.number]).values test_features = features.loc['test'].select_dtypes(include=[np.number]).values # Validation function n_folds = 5 def rmsle_cv(model): kf = KFold(n_folds, shuffle=True, random_state=101010).get_n_splits(train_features) rmse= np.sqrt(-cross_val_score(model, train_features, train_labels, scoring="neg_mean_squared_error", cv = kf)) return(rmse) # Modelling enet_model = make_pipeline(RobustScaler(), ElasticNet(alpha=0.0005, l1_ratio=.9, random_state=101010)) print(enet_model) #score = rmsle_cv(enet_model) #print("\nRMSLE: {:.4f} (+/- {:.4f})\n".format(score.mean(), score.std())) gb_model = ensemble.GradientBoostingRegressor(n_estimators=3000, learning_rate=0.05, max_depth=4, max_features='sqrt', min_samples_leaf=15, min_samples_split=10, loss='huber', random_state =101010) print(gb_model) #score = rmsle_cv(gb_model) #print("\nRMSLE: {:.4f} (+/- {:.4f})\n".format(score.mean(), score.std())) xgb_model = xgb.XGBRegressor(colsample_bytree=0.2, gamma=0.0, learning_rate=0.05, max_depth=3, min_child_weight=1.7, n_estimators=2200, reg_alpha=0.9, reg_lambda=0.6, subsample=0.5, silent=1, seed=101010) print(xgb_model) #score = rmsle_cv(xgb_model) #print("\nRMSLE: {:.4f} (+/- {:.4f})\n".format(score.mean(), score.std())) lasso_model = make_pipeline(RobustScaler(), Lasso(alpha=0.0005, random_state=101010)) print(lasso_model) #score = rmsle_cv(lasso_model) #print("\nRMSLE: {:.4f} (+/- {:.4f})\n".format(score.mean(), score.std())) krr_model = KernelRidge(alpha=0.6, kernel='polynomial', degree=2, coef0=2.5) print(krr_model) #score = rmsle_cv(krr_model) #print("\nRMSLE: {:.4f} (+/- {:.4f})\n".format(score.mean(), score.std())) # Now let's check how do the averaged models work averaged_models = AveragingModels(models = (gb_model, xgb_model, enet_model, lasso_model, krr_model)) print("AVERAGED MODELS") score = rmsle_cv(averaged_models) print("\nRMSLE: {:.4f} (+/- {:.4f})\n".format(score.mean(), score.std())) # Getting our SalePrice estimation averaged_models.fit(train_features, train_labels) final_labels = np.exp(averaged_models.predict(test_features)) # Saving to CSV pd.DataFrame({'Id': test_ID, 'SalePrice': final_labels}).to_csv('submission-11.csv', index =False)