123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990 |
- """
- evaluate.py
- """
- import argparse
- import os
- import time
- from ds4ml.evaluator import BiFrame
- from ds4ml.utils import read_data_from_csv, CustomFormatter, str_to_list
- def main():
- parser = argparse.ArgumentParser(
- description='Evaluate the utility of synthesized dataset compared with '
- 'the source dataset.',
- formatter_class=CustomFormatter,
- add_help=False)
- # positional arguments
- parser.add_argument('source',
- help='set file path of source (raw) dataset to be '
- 'compared with synthesized dataset, only support '
- 'CSV files')
- parser.add_argument('target',
- help='set file path of target (synthesized) dataset to '
- 'evaluate')
- # optional arguments
- group = parser.add_argument_group('general arguments')
- group.add_argument("-h", "--help", action="help",
- help="show this help message and exit")
- group.add_argument('--na-values', metavar='LIST',
- help='set additional values to recognize as NA/NaN; ('
- 'default null values are from pandas.read_csv)')
- group.add_argument('-o', '--output', metavar='FILE', default='report.html',
- help='set output path for evaluation report; (default '
- 'is "report.html" under current work directory)')
- group = parser.add_argument_group('advanced arguments')
- group.add_argument('--category', metavar='LIST',
- help='set categorical columns separated by a comma.')
- group.add_argument('-t', '--test',
- help='set test dataset for classification or regression '
- 'task; (default take 20%% from source dataset)')
- group.add_argument('--class-label', metavar='LIST',
- help='set column name as class label for classification '
- 'or regression task; supports one or multiple '
- 'columns (separated by comma)')
- args = parser.parse_args()
- start = time.time()
- na_values = str_to_list(args.na_values)
- class_labels = str_to_list(args.class_label)
- categories = str_to_list(args.category)
- # check kinds of parameters
- args.output = os.path.join(os.getcwd(), args.output)
- # if output folder not exists, then create it.
- if not os.path.exists(os.path.dirname(args.output)):
- os.makedirs(os.path.dirname(args.output))
- def complement(attrs, full):
- return set(attrs or []) - set(full)
- # Initialization task:
- source = read_data_from_csv(args.source, na_values=na_values, header='infer')
- target = read_data_from_csv(args.target, na_values=na_values, header='infer')
- test = read_data_from_csv(args.test) if args.test is not None else None
- comp = complement(class_labels, source.columns)
- if comp:
- parser.exit(message=f'--class-label(s): {comp} are not in source file.')
- comp = complement(class_labels, target.columns)
- if comp:
- parser.exit(message=f'--class-label(s): {comp} are not in target file.')
- frame = BiFrame(source, target, categories=categories)
- frame.to_html(buffer=args.output, title='Data Utility Evaluation Report',
- labels=class_labels, test=test)
- duration = time.time() - start
- print(f'Evaluate dataset {args.source} and {args.target} and generate '
- f'report at {args.output} in {round(duration, 2)} seconds.')
- if __name__ == '__main__':
- # For Testing
- main()
|