#pip install -U scikit-learn #Make sure all the .txt files that need to be checked are in the same directory as the script import os from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity user_files = [doc for doc in os.listdir() if doc.endswith('.txt')] user_notes = [open(_file, encoding='utf-8').read() for _file in user_files] def vectorize(Text): return TfidfVectorizer().fit_transform(Text).toarray() def similarity(doc1, doc2): return cosine_similarity([doc1, doc2]) vectors = vectorize(user_notes) s_vectors = list(zip(user_files, vectors)) plagiarism_results = set() def check_plagiarism(): global s_vectors for student_a, text_vector_a in s_vectors: new_vectors = s_vectors.copy() current_index = new_vectors.index((student_a, text_vector_a)) del new_vectors[current_index] for student_b, text_vector_b in new_vectors: sim_score = similarity(text_vector_a, text_vector_b)[0][1] student_pair = sorted((student_a, student_b)) score = (student_pair[0], student_pair[1], sim_score) plagiarism_results.add(score) return plagiarism_results for data in check_plagiarism(): print(data)