123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189 |
- def ann_viz(model, view=True, filename="network.gv", title="My Neural Network"):
- """Vizualizez a Sequential model.
- # Arguments
- model: A Keras model instance.
- view: whether to display the model after generation.
- filename: where to save the vizualization. (a .gv file)
- title: A title for the graph
- """
- from graphviz import Digraph;
- import keras;
- from keras.models import Sequential;
- from keras.layers import Dense, Conv2D, MaxPooling2D, Dropout, Flatten;
- import json;
- input_layer = 0;
- hidden_layers_nr = 0;
- layer_types = [];
- hidden_layers = [];
- output_layer = 0;
- for layer in model.layers:
- if(layer == model.layers[0]):
- input_layer = int(str(layer.input_shape).split(",")[1][1:-1]);
- hidden_layers_nr += 1;
- if (type(layer) == keras.layers.core.Dense):
- hidden_layers.append(int(str(layer.output_shape).split(",")[1][1:-1]));
- layer_types.append("Dense");
- else:
- hidden_layers.append(1);
- if (type(layer) == keras.layers.convolutional.Conv2D):
- layer_types.append("Conv2D");
- elif (type(layer) == keras.layers.pooling.MaxPooling2D):
- layer_types.append("MaxPooling2D");
- elif (type(layer) == keras.layers.core.Dropout):
- layer_types.append("Dropout");
- elif (type(layer) == keras.layers.core.Flatten):
- layer_types.append("Flatten");
- elif (type(layer) == keras.layers.core.Activation):
- layer_types.append("Activation");
- else:
- if(layer == model.layers[-1]):
- output_layer = int(str(layer.output_shape).split(",")[1][1:-1]);
- else:
- hidden_layers_nr += 1;
- if (type(layer) == keras.layers.core.Dense):
- hidden_layers.append(int(str(layer.output_shape).split(",")[1][1:-1]));
- layer_types.append("Dense");
- else:
- hidden_layers.append(1);
- if (type(layer) == keras.layers.convolutional.Conv2D):
- layer_types.append("Conv2D");
- elif (type(layer) == keras.layers.pooling.MaxPooling2D):
- layer_types.append("MaxPooling2D");
- elif (type(layer) == keras.layers.core.Dropout):
- layer_types.append("Dropout");
- elif (type(layer) == keras.layers.core.Flatten):
- layer_types.append("Flatten");
- elif (type(layer) == keras.layers.core.Activation):
- layer_types.append("Activation");
- last_layer_nodes = input_layer;
- nodes_up = input_layer;
- if(type(model.layers[0]) != keras.layers.core.Dense):
- last_layer_nodes = 1;
- nodes_up = 1;
- input_layer = 1;
- g = Digraph('g', filename=filename);
- n = 0;
- g.graph_attr.update(splines="false", nodesep='1', ranksep='2');
- #Input Layer
- with g.subgraph(name='cluster_input') as c:
- if(type(model.layers[0]) == keras.layers.core.Dense):
- the_label = title+'\n\n\n\nInput Layer';
- if (int(str(model.layers[0].input_shape).split(",")[1][1:-1]) > 10):
- the_label += " (+"+str(int(str(model.layers[0].input_shape).split(",")[1][1:-1]) - 10)+")";
- input_layer = 10;
- c.attr(color='white')
- for i in range(0, input_layer):
- n += 1;
- c.node(str(n));
- c.attr(label=the_label)
- c.attr(rank='same');
- c.node_attr.update(color="#2ecc71", style="filled", fontcolor="#2ecc71", shape="circle");
- elif(type(model.layers[0]) == keras.layers.convolutional.Conv2D):
- #Conv2D Input visualizing
- the_label = title+'\n\n\n\nInput Layer';
- c.attr(color="white", label=the_label);
- c.node_attr.update(shape="square");
- pxls = str(model.layers[0].input_shape).split(',');
- clr = int(pxls[3][1:-1]);
- if (clr == 1):
- clrmap = "Grayscale";
- the_color = "black:white";
- elif (clr == 3):
- clrmap = "RGB";
- the_color = "#e74c3c:#3498db";
- else:
- clrmap = "";
- c.node_attr.update(fontcolor="white", fillcolor=the_color, style="filled");
- n += 1;
- c.node(str(n), label="Image\n"+pxls[1]+" x"+pxls[2]+" pixels\n"+clrmap, fontcolor="white");
- else:
- raise ValueError("ANN Visualizer: Layer not supported for visualizing");
- for i in range(0, hidden_layers_nr):
- with g.subgraph(name="cluster_"+str(i+1)) as c:
- if (layer_types[i] == "Dense"):
- c.attr(color='white');
- c.attr(rank='same');
- #If hidden_layers[i] > 10, dont include all
- the_label = "";
- if (int(str(model.layers[i].output_shape).split(",")[1][1:-1]) > 10):
- the_label += " (+"+str(int(str(model.layers[i].output_shape).split(",")[1][1:-1]) - 10)+")";
- hidden_layers[i] = 10;
- c.attr(labeljust="right", labelloc="b", label=the_label);
- for j in range(0, hidden_layers[i]):
- n += 1;
- c.node(str(n), shape="circle", style="filled", color="#3498db", fontcolor="#3498db");
- for h in range(nodes_up - last_layer_nodes + 1 , nodes_up + 1):
- g.edge(str(h), str(n));
- last_layer_nodes = hidden_layers[i];
- nodes_up += hidden_layers[i];
- elif (layer_types[i] == "Conv2D"):
- c.attr(style='filled', color='#5faad0');
- n += 1;
- kernel_size = str(model.layers[i].get_config()['kernel_size']).split(',')[0][1] + "x" + str(model.layers[i].get_config()['kernel_size']).split(',')[1][1 : -1];
- filters = str(model.layers[i].get_config()['filters']);
- c.node("conv_"+str(n), label="Convolutional Layer\nKernel Size: "+kernel_size+"\nFilters: "+filters, shape="square");
- c.node(str(n), label=filters+"\nFeature Maps", shape="square");
- g.edge("conv_"+str(n), str(n));
- for h in range(nodes_up - last_layer_nodes + 1 , nodes_up + 1):
- g.edge(str(h), "conv_"+str(n));
- last_layer_nodes = 1;
- nodes_up += 1;
- elif (layer_types[i] == "MaxPooling2D"):
- c.attr(color="white");
- n += 1;
- pool_size = str(model.layers[i].get_config()['pool_size']).split(',')[0][1] + "x" + str(model.layers[i].get_config()['pool_size']).split(',')[1][1 : -1];
- c.node(str(n), label="Max Pooling\nPool Size: "+pool_size, style="filled", fillcolor="#8e44ad", fontcolor="white");
- for h in range(nodes_up - last_layer_nodes + 1 , nodes_up + 1):
- g.edge(str(h), str(n));
- last_layer_nodes = 1;
- nodes_up += 1;
- elif (layer_types[i] == "Flatten"):
- n += 1;
- c.attr(color="white");
- c.node(str(n), label="Flattening", shape="invtriangle", style="filled", fillcolor="#2c3e50", fontcolor="white");
- for h in range(nodes_up - last_layer_nodes + 1 , nodes_up + 1):
- g.edge(str(h), str(n));
- last_layer_nodes = 1;
- nodes_up += 1;
- elif (layer_types[i] == "Dropout"):
- n += 1;
- c.attr(color="white");
- c.node(str(n), label="Dropout Layer", style="filled", fontcolor="white", fillcolor="#f39c12");
- for h in range(nodes_up - last_layer_nodes + 1 , nodes_up + 1):
- g.edge(str(h), str(n));
- last_layer_nodes = 1;
- nodes_up += 1;
- elif (layer_types[i] == "Activation"):
- n += 1;
- c.attr(color="white");
- fnc = model.layers[i].get_config()['activation'];
- c.node(str(n), shape="octagon", label="Activation Layer\nFunction: "+fnc, style="filled", fontcolor="white", fillcolor="#00b894");
- for h in range(nodes_up - last_layer_nodes + 1 , nodes_up + 1):
- g.edge(str(h), str(n));
- last_layer_nodes = 1;
- nodes_up += 1;
- with g.subgraph(name='cluster_output') as c:
- if (type(model.layers[-1]) == keras.layers.core.Dense):
- c.attr(color='white')
- c.attr(rank='same');
- c.attr(labeljust="1");
- for i in range(1, output_layer+1):
- n += 1;
- c.node(str(n), shape="circle", style="filled", color="#e74c3c", fontcolor="#e74c3c");
- for h in range(nodes_up - last_layer_nodes + 1 , nodes_up + 1):
- g.edge(str(h), str(n));
- c.attr(label='Output Layer', labelloc="bottom")
- c.node_attr.update(color="#2ecc71", style="filled", fontcolor="#2ecc71", shape="circle");
- g.attr(arrowShape="none");
- g.edge_attr.update(arrowhead="none", color="#707070");
- if view == True:
- g.view();
|