def visualize_weights(net, layer_name, padding=4, filename=''): # The parameters are a list of [weights, biases] data = np.copy(net.params[layer_name][0].data) # N is the total number of convolutions N = data.shape[0]*data.shape[1] # Ensure the resulting image is square filters_per_row = int(np.ceil(np.sqrt(N))) # Assume the filters are square filter_size = data.shape[2] # Size of the result image including padding result_size = filters_per_row*(filter_size + padding) - padding # Initialize result image to all zeros result = np.zeros((result_size, result_size)) # Tile the filters into the result image filter_x = 0 filter_y = 0 for n in range(data.shape[0]): for c in range(data.shape[1]): if filter_x == filters_per_row: filter_y += 1 filter_x = 0 for i in range(filter_size): for j in range(filter_size): result[filter_y*(filter_size + padding) + i, filter_x*(filter_size + padding) + j] = data[n, c, i, j] filter_x += 1 # Normalize image to 0-1 min = result.min() max = result.max() result = (result - min) / (max - min) # Plot figure plt.figure(figsize=(10, 10)) plt.axis('off') plt.imshow(result, cmap='gray', interpolation='nearest') # Save plot if filename is set if filename != '': plt.savefig(filename, bbox_inches='tight', pad_inches=0) plt.show()